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Kinetic theory of point vortices: Diffusion coefficient and systematic drift
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We develop a kinetic theory for point vortices in two-dimensional hydrodynamics. Using standard projection
operator techniques, we derive a Fokker-Planck equation describing the relaxation of a ‘‘test’’ vortex in a bath
of ‘‘field’’ vortices at statistical equilibrium. The relaxation is due to the combined effect of a diffusion and a
drift. The drift is shown to be responsible for the organization of point vortices at negative temperatures. A
description that goes beyond the thermal bath approximation is attempted. A new kinetic equation is obtained
which respects all conservation laws of the point vortex system and satisfies a H theorem. Close to equilibrium,
this equation reduces to the ordinary Fokker-Planck equation.
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I. INTRODUCTION

It is often useful in two-dimensional turbulence to a
proximate a continuous vorticity field by a cloud of poi
vortices. The main interest is that such a system is Ham
tonian @1# and can be studied by rather ordinary statisti
mechanics. This was first considered by Onsager@2#, who
showed qualitatively the existence of negative tempera
states at which vortices cluster. He could therefore exp
the occurrence of large-scale vortices~or ‘‘supervortices’’!
often observed in nature. This was a remarkable anticipa
since observations were very scarce at that time. His w
was pursued by Joyce and Montgomery@3# and Lundgren
and Pointin@4#, who introduced a mean-field approximatio
and obtained explicit results for the equilibrium state. Th
derived in particular a Maxwell-Boltzmann statistics for t
distribution of point vortices at equilibrium.

Less is known concerning the relaxation towar
equilibium. In fact, the evolution of theN-particle distribu-
tion function is governed by a Liouville equation, but th
equation contains too much information to be of practi
use. One is more interested in the evolution of the o
particle distribution functionP(r ,t), which gives the prob-
ability that a point vortex will be found inr at timet. In Ref.
@5#, we have described the relaxation ofP(r ,t) towards the
Boltzmann distribution in terms of a phenomenologic
Fokker-Planck equation. In this approach, the vortices ha
diffusive motion due to random fluctuations and they ex
rience in addition asystematic drift@5# directed along the
background density gradient. Physically, the drift is the res
of a polarization process and its mathematical expression
be determined with a linear-response theory@5#. It is found
that the drift is ‘‘attractive’’ at negative temperatures so t
vortices cluster into macrovortices in agreement with Ons
er’s thermodynamical approach. At equilibrium, the drift b
ances the scattering and maintains a nontrivial vortex dis
bution ~the Boltzmann distribution! providing a dynamical
explanation for the persistence of clustering.

In this paper, we justify our phenomenological model
deriving the Fokker-Planck equation directly from the Lio
ville equation, using projection operator techniques@6#.
These methods are standard in statistical mechanics but
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are applied here to a system of vortices. We first consider
relaxation of a ‘‘test’’ vortex in a thermal bath in which th
‘‘field’’ vortices are in statistical equilibrium. In this approxi
mation, the Fokker-Planck equation appears in its usual fo
with a diffusion term and a drift term. The drift coefficient
connected to the diffusion coefficient and to the temperat
of the bath 1/b by an Einstein formula. The diffusion coef
ficient is expressed as a Kubo formula, i.e., as the integra
the velocity autocorrelation function. Using an approxim
tion in which the vortices are advected by the equilibriu
flow, we find that the autocorrelation function decays li
t22 for large times@5#. This is a slow decay but it ensures th
convergence of the diffusion coefficient. We also derive no
Markovian equations that keep track of memory effec
Then, we relax the thermal bath approximation and deriv
generalized kinetic equation for our vortex system. This
tegrodifferential equation satisfies all conservation laws
the point vortex system and increases the Boltzmann entr
~H theorem!. The relaxation towards equilibrium is due to
condition of resonance. If this condition is not satisfied, t
system can remain frozen in a sort of ‘‘metastable’’ equil
rium. In contrast, if the system is sufficiently resonant, it w
converge towards the maximum entropy state described
the Boltzmann distribution. Close to equilibrium, our gene
alized kinetic equation reduces to the ordinary Fokk
Planck equation.

The methods developed in this paper are inspired by th
introduced in plasma physics and stellar dynamics@7#. In
particular, thesystematic drift@5# of a point vortex is the
counterpart of thedynamical friction@8# experienced by a
star in a stellar system. Further analogies between t
dimensional~2D! vortices and stellar systems are discuss
in the paper and in@9–14#. Other kinetic theories of poin
vortices have been developed in Ref.@34# in a different con-
text. A good review on point vortex dynamics is given b
Newton @35#.

II. STATISTICAL MECHANICS OF POINT VORTICES

A. The point vortex model

In a two-dimensional incompressible fluid, the veloci
field u is divergenceless and can be written in terms o
stream functionc in the form
©2001 The American Physical Society09-1
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P. H. CHAVANIS PHYSICAL REVIEW E 64 026309
u52z3“c, ~1!

wherez is a unit vector normal to the flow. The stream fun
tion is related to the vorticityvz5“3u by the Poisson
equation

v52Dc ~2!

obtained by taking the curl of Eq.~1!. The impermeability
condition implies thatc is constant on the boundary and w
shall takec50 by convention.

We shall consider the situation in which the velocity
created by a collection ofN point vortices of equal circula
tion g. In that case, the vorticity field can be expressed a
sum ofd functions in the form

v~r ,t !5(
i 51

N

gd„r2r i~ t !…, ~3!

wherer i(t) denotes the position of point vortexi at timet. Its
velocity is given by

V i5
dr i

dt
52z3“c~r5r i ,t !, ~4!

wherec is a solution of the Poisson equation~2! with the
vorticity field ~3!. In an unbounded fluid, one has

c~r !52
1

2p (
i 51

N

g lnur2r i u. ~5!

Therefore, the velocity of a point vortex is equal to the su
of the velocitiesV( j→ i ) produced by theN21 other vorti-
ces, i.e.,

V i5(
j Þ i

V~ j→ i ! ~6!

with

V~ j→ i !52
g

2p
z3

r j2r i

ur j2r i u2
. ~7!

The above dynamics can be cast in a Hamiltonian form@1#:

g
dxi

dt
5

]H

]yi
, g

dyi

dt
52

]H

]xi
, ~8!

H52
1

4p (
iÞ j

g2 lnur i2r j u, ~9!

where the coordinates (x,y) of the point vortices are canon
cally conjugate. These equations of motion still apply wh
the fluid is restrained by boundaries, in which case
Hamiltonian~9! is modified so as to allow for vortex image
and may be constructed in terms of Green’s functions
pending on the geometry of the domain. SinceH is not ex-
plicitly time dependent, it is a constant of the motion and
represents the ‘‘potential’’ energy of the point vortices~we
02630
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shall see later on that it also represents the kinetic energ
the flow!. Therefore, point vortices behave like particles
interactionlike electric charges or stars. Note, however, t
the Hamiltonian~9! does not involve a ‘‘kinetic’’ energy of
the vortices in the usual sense. This is related to the part
lar circumstance that a point vortex produces a velocity,
an acceleration. As a result, an isolated vortex remain
rest, contrary to a material particle, which has a rectilin
motion due to its inertia. Point vortices form, therefore,
very peculiar Hamiltonian system.

B. The microcanonical approach of Onsager

The statistical mechanics of point vortices was first co
sidered by Onsager@2#, who showed the existence of neg
tive temperatures at which point vortices cluster into ‘‘su
ervortices.’’ Let us briefly recall his argumentation.

Consider a liquid enclosed by a boundary, so that the v
tices are confined to an areaA. Since the coordinates (x,y)
of the point vortices are canonically conjugate, the ph
space coincides with the configuration space and isfinite:

E dx1dy1•••dxNdyN5S E dx dyD N

5AN. ~10!

This striking property contrasts with most classical Ham
tonian systems considered in statistical mechanics, wh
have unbounded phase spaces due to the presence of
netic term in the Hamiltonian.

As is usual in the microcanonical description of a syst
of N particles, we introduce the density of states,

g~E!5E dx1dy1•••dxNdyNd„E2H~x1 ,y1 , . . . ,xN ,yN!…,

~11!

which gives the phase-space volume per unit interaction
ergy E. The phase-space volume, which corresponds to
ergiesH less than a given valueE, can be written

F~E!5E
Emin

E

g~E!dE. ~12!

It increases monotonically from zero toAN when E goes
from Emin to 1`. Therefore,g(E)5dF(E)/dE will have a
maximum value at someE5Em , say, before decreasing t
zero whenE→1`.

In the microcanonical ensemble, the entropy and the te
perature are defined by

S5 ln g~E! b5
1

T
5

dS

dE
. ~13!

For E.Em , S(E) is a decreasing function of energy an
consequently the temperature isnegative. Now, high-energy
statesE@Em are clearly those in which the vortices a
crowded as close together as possible. For energies
slighlty greater thanEm , the concentration will not be so
dramatic but there will be a tendency for the vortices
group themselves together on a macroscopic scale and
9-2
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KINETIC THEORY OF POINT VORTICES: . . . PHYSICAL REVIEW E64 026309
‘‘clusters’’ or ‘‘supervortices.’’ In contrast, forE,Em , the
temperature is positive and the vortices have the tendenc
accumulate on the boundary of the domain in order to
crease their energy. For a system with positive and nega
vortices, the negative temperature states, achieved for
tively high energies, consist of two large counter-rotati
vortices physically well separated in the box. On the co
trary, whenE→2`, the temperature is positive and vortic
of opposite circulation tend to pair off.

C. The mean-field approximation

It is easy to show that the exact distribution of point vo
tices expressed in terms ofd functions,

vexact~r ,t !5(
i 51

N

gd„r2r i~ t !…, ~14!

is a solution of the Euler equation,

]vex

]t
1uex“vex50, ~15!

whereuex is the exact velocity field determined by Eqs.~1!,
~2!, and~14!. This is proved as follows. Taking the derivativ
of Eq. ~14! with respect to time, we obtain

]vex

]t
52(

i 51

N

g“d„r2r i~ t !…V i . ~16!

Using V i5uex„r i(t),t…, we can rewrite the foregoing equa
tion in the form

]vex

]t
52“(

i 51

N

gd„r2r i~ t !…uex~r ,t !. ~17!

Since the velocity is divergenceless, we obtain

]vex

]t
~r ,t !52uex„r ,t…“(

i 51

N

gd„r2r i~ t !…52uex“vex~r ,t !.

~18!

Therefore, the Euler equation~15! with Eqs.~1!, ~2!, and~3!
contains exactly the same information as the Hamilton
system~8! and ~9!.

This description in terms ofd functions, while being tech-
nically correct, is useless for practical purposes, becaus
requires the knowledge of the exact trajectories of the p
vortices for an arbitrary initial condition@or the solution of
the Euler equation~15!#. WhenN is large, this task is impos
sibly difficult. Therefore, instead of the exact vorticity fie
expressed in terms ofd functions, one is more interested
functions that are smooth. For that reason, we introduc
smooth vorticity field^v&(r ,t), which is proportional to the
average number of vortices contained in the cell (r ,r1dr ) at
time t. This mean-field description, which ignores the gran
larities of the sytem, requires that it be possible to divide
domain in a large number of cells in such a way that e
cell is ~a! large enough to contain a macroscopic number
02630
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point vortices, but~b! small enough for all the particles in th
cell to be assumed to possess the same average charact
of the cell.

In this mean-field approximation, the Hamiltonian~9! is
changed into

E52
1

4pE ^v&~r !^v&~r 8!lnur2r 8ud2rd2r 8. ~19!

In writing this expression, we have not taken into account
constraintj Þ i appearing in Eq.~9!. Really, in Eq.~19! the
integration extends over the pointr5r 8 so that Eq.~19! con-
tains self-energy terms that become infinitely large for po
vortices. As will soon become apparent, this mean-field
proximation implies that the energyE is positive, a property
that is not necessarily shared by the Hamiltonian~9!.

Using Eq. ~5!, adequately generalized to account for
continuous distribution of vortices, our expression~19! for E
can be rewritten

E5
1

2E ^v&cd2r . ~20!

Introducing explicitly the Poisson equation in Eq.~20! and
integrating by parts, one has successively

E5
1

2E c~2Dc!d2r5
1

2E ~“c!2d2r5E ^u&2

2
d2r ,

~21!

where^u& is the smooth velocity field~the second equality is
obtained by a part integration with the conditionc50 on the
boundary!. Therefore,E can be interpreted either as the p
tential energy of interaction between vortices@see Eq.~20!#
or as the kinetic energy of the flow@see Eq.~21!#.

D. The mean-field equilibrium

We now wish to determine the distribution of vortices
equilibrium following a statistical mechanics approach@3#.
To that purpose, using the Boltzmann procedure, we div
the macrocells (r ,r1dr ) into a large number of microcells
and enumerate the number of ‘‘microstates’’ that correspo
to the same ‘‘macroscopic’’ configuration of the system. T
logarithm of this number defines the entropy. In the me
field approximation, this leads to the classical formula

S52NE P~r !ln P~r !d2r , ~22!

whereP(r ) is the density probability that a point vortex wi
be in the surface element centered onr . The average vortic-
ity in r is related to this probability density by

^v&~r !5NgP~r !. ~23!

At equilibrium, the system is in the most probable mac
scopic state, i.e., the state that is the most represented a
microscopic level. This optimal state is obtained by ma
mizing the Boltzmann entropy~22! at fixed energy~20! and
vortex numberN, or total circulation
9-3
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P. H. CHAVANIS PHYSICAL REVIEW E 64 026309
G5Ng5E ^v&d2r . ~24!

Writing the variational principle in the form

dS2bdE2adG50, ~25!

where b and a are Lagrange multipliers, we find that th
maximum entropy state corresponds to the Boltzmann di
bution @3#,

^v&5Ae2bgc, ~26!

with inverse temperatureb. We can account for the conse
vation of angular momentumL5*^v&r 2d2r ~in a circular
domain! and impulseP5*^v&yd2r ~in a channel! by intro-
ducing appropriate Lagrange multipliersV andU for each of
these constraints. In that case, Eq.~26! remains valid pro-
vided that we replace the stream functionc by the relative
stream functionc85c1(V/2)r 22Uy. This more genera
situation has been considered in, e.g., Ref.@15# to describe
rotating or translating dipoles.

Substituting the Boltzmann relation between^v& andc in
the Poisson equation~2!, we obtain a differential equation fo
the stream function:

2Dc5Ae2bgc ~point vortices!, ~27!

which determines the equilibrium distribution of vortices.
the case of stellar systems and electric charges, the c
sponding Boltzmann-Poisson equation has the form@16#

DF54pGAe2b8mF ~stellar systems!, ~28!

2DF5
A

e0
e2b8qF ~electric charges!, ~29!

whereF denotes successively the gravitational and the e
trostatic potential. For these systems,b8.0 since the tem-
perature is a measure of the kinetic energy. In contrast,
point vortices there is no kinetic term in the Hamiltonian~9!
and the temperature can be either positive or negative. W
b,0, Eq. ~27! is similar in structure to Eq.~28!. The vorti-
ces tend to attract each other, like stars in a galaxy, and f
‘‘clusters’’ or ‘‘supervortices.’’ The density profile deter
mined by Eq.~27! or Eq.~28! is adecreasingfunction of the
distance. Whenb.0, Eq. ~27! is similar in structure to Eq.
~29!. The vortices tend to repel each other, like elect
charges, and accumulate at the boundary. The density pr
determined by Eq.~27! or Eq. ~29! is an increasingfunction
of the distance. Therefore, the formal analogy between
vortices and stellar systems is intimately related to the e
tence of negative temperatures in 2D turbulence. Howe
the physical mechanism by which vortices and stellar s
tems achieve equilibrium is different. Whereas the organ
tion of stars is relatively clear because of the attractive na
of gravity, the organization of point vortices at negative te
peratures is much less intuitive. In the following section,
shall give a physical interpretation of this phenomenon
terms of a ‘‘systematic drift.’’
02630
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III. ELEMENTARY DERIVATION OF THE SYSTEMATIC
DRIFT

A. Analogy with Brownian motion: The necessity of the drift

We shall first show the necessity of this drift by using
analogy with Brownian theory. The starting point of th
analogy is to realize that the velocity of a point vortex can
decomposed in two terms, namely a smoothly varying fu
tion of position and timêV&(r ,t) and a functionV(t) taking
into account the ‘‘granularity’’ of the system and undergoi
strong discontinuities. The total velocity of a point vorte
can therefore be written

V5^V&~r ,t !1V~ t !. ~30!

The velocity^V&(r ,t) reflects the influence of the system
a whole and is generated by the mean vorticity^v&(r ,t)
according to the Biot and Savart formula:

^V&~r ,t !52
1

2p
z3E r 82r

ur 82r u2
^v&~r 8,t !d2r 8. ~31!

The fluctuationV(t) arises from the difference between th
exact distribution of the point vorticesvexact(r ,t) and their
‘‘smoothed-out’’ distribution^v&(r ,t). It is on account of
these fluctuations that the velocity of the test vortex w
depart from its mean-field valuêV&. The velocity fluctua-
tion V, of orderg/d ~whered;n21/2 is the intervortex dis-
tance!, is much smaller than the average velocity^V&, of
orderngR ~whereR is the domain size!, but this term has a
cumulative effect that gives rise to a process of diffusion
makes sense, therefore, to introduce a stochastic descri
of the vortex motion such as that for colloidal suspensions
a liquid @17# or stars in globular clusters@8#. However, con-
trary to the ideal Brownian motion, point vortex system
have relatively long correlation times. This makes the stu
much more complicated than usual and a technical stud
Sec. IV is required. In order to gain some physical insig
into the problem, we shall ignore this difficulty for the mo
ment and describe the system by traditional stochastic
cesses.

According to Eq.~30!, we would naively expect that the
evolution of the density probabilityP(r ,t) would be gov-
erned by a diffusion equation of the form

]P

]t
1^V&“P5DDP. ~32!

This would in fact be the case for a passive particle hav
no retroaction on the vortices or when the distribution
vortices is uniform, as in@18,13,19#. However, this diffusion
equation cannot be valid when the system is inhomogene
A first apparent reason is that Eq.~32! does not converge
towards the Boltzmann distribution~26! when t→1`. An-
other related difficulty is that Eq.~32! does not conserve
energy. It seems, therefore, that a term is missing to
against the diffusion.

These problems are similar to those encountered
Brownian theory or for stellar systems. They have traditio
9-4
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KINETIC THEORY OF POINT VORTICES: . . . PHYSICAL REVIEW E64 026309
ally been solved by introducing adynamical frictionin order
to compensate for the effect of diffusion. The occurrence
this frictional force is a manifestation of the ‘‘fluctuation
dissipation’’ theorem in statistical mechanics. In the pres
context, the dynamical friction is replaced by asystematic
drift of the vortices. We must therefore rewrite the decom
sition ~30! in the form

V5^V&2j“c1V~ t !, ~33!

wherej is the drift coefficient. In Sec. III B, we shall give
physical justification for the existence of the drift in terms
a polarization process, and in Sec. IV we shall derive t
term directly from the Liouville equation by usin
projection-operator techniques. The importance of this d
was first pointed out by Chavanis@5# using a thermal bath
approximation and a linear-response theory. The drift te
must be calculated by resorting to relatively elaborate te
niques, but it is remarkable that a general relationship
tween j and D can be obtained without analyzing at an
point the details of the ‘‘subdynamics.’’

According to Eq.~33!, the equation of motion for a poin
vortex can be written in the form

dr

dt
5^V&2j“c1V~ t !. ~34!

Since the velocityV(t) undergoes strong discontinuities, th
trajectoryr (t) of the point vortex is not differentiable. There
fore, Eq.~34! must be viewed as a stochastic equation ana
gous to the Langevin equation in the ordinary Browni
theory. LetDt be an interval of time long compared to th
fluctuation time but short at the scale on which the phys
parameters change appreciably. The variation in the pos
Dr of the particle duringDt is given by

Dr5^V&Dt2j“cDt1B~Dt !, ~35!

where

B~Dt !5E
t

t1Dt

V~ t8!dt8. ~36!

Each fluctuationV produces a small displacementdr but the
repeated action of these fluctuations produces a net disp
ment of the same order as the driftj“c. To determine the
probability w@B(Dt)# that the fluctuations produce a di
placementB(Dt) during the time intervalDt, we first divide
the interval (t,t1Dt) into a succession of discrete incr
ments in position and observe thatB(Dt) is a sum ofN
random variablesT(Vi)Vi , where T(V) characterizes the
typical duration of the velocity fluctuationV. This is a prob-
lem of random walks whereB(Dt) represents the distanc
reached afterN steps. For largeN’s, the central-limit theorem
leads to a Gaussian transition probability:

w@B~Dt !#5
1

4pDDt
e2B(Dt)2/4DDt ~37!

with a diffusion coefficient
02630
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4 ^T~V!V 2&. ~38!

We now assume that the motion of a point vortex can
idealized by a Markov process, i.e., the probability at tim
t1Dt depends on the probability at timet but not at earlier
times. As indicated previously, this approximation is n
completely correct in the case of point vortices, which ha
long correlation times. However, relaxing this hypothe
would involve more intricate equations~see Sec. IV! and we
shall ignore this difficulty for the moment. We write, ther
fore,

P~r ,t1Dt !5E P~r2Dr ,t !w~r2Dr uDr !d2~Dr !,

~39!

wherew(r2Dr uDr ) is the probability for a point vortex lo-
cated inr2Dr to suffer an increment of positionDr during
Dt. ExpandingP(r ,t1Dt), P(r2Dr ,t), andw(r2Dr uDr )
in the form of Taylor series, we arrive at the Fokker-Plan
equation in its general form:

]P

]t
Dt52(

i

]

]r i
~P^Dr i&!

1
1

2(i , j
]2

]r i]r j
~P^Dr iDr j&!, ~40!

where

^Dr i&5E Dr iw~r uDr !d2~Dr !, ~41!

^Dr iDr j&5E Dr iDr jw~r uDr !d2~Dr !. ~42!

According to Eq.~37!, the transition probability fromr to
r1Dr is given by

w~r uDr !5
1

4pDDt
expH 2

@Dr2~^V&2j“c!Dt#2

4DDt J .

~43!

With Eq. ~43!, the moments~41! and ~42! can be easily
evaluated, yielding

^Dr &5~^V&2j“c!Dt, ^Dr iDr j&52DDtd i j . ~44!

Substituting these results in the general Fokker-Planck eq
tion ~40!, we find that

]P

]t
1^V&“P5“~D“P1jP“c!. ~45!

We had previously introduced this equation in Ref.@5# using
phenomenological arguments. The physical interpretation
each term is straightforward. The left-hand side~which can
be writtendP/dt) is an advection term due to the smoo
mean-field velocitŷ V&. The right-hand side can be writte
as the divergence of a current2“•J and is the sum of two
terms: the first term is a diffusion due to the erratic motion
9-5



ib
th

at

e

s
-
t

f
e

he
e
c
on
o
d

th

en
e

an

tio
fs
o

c
s-

ur

ca

r by
ion

the

s
t’’
r-
at
s.

t of
ld

e
ive.

e
ore,
ge-

on
t
be

u-

n-

sion
sses
to
sfy.
rin-

en-
ese
the

as

-

ase

P. H. CHAVANIS PHYSICAL REVIEW E 64 026309
the vortices caused by the fluctuationsV; the second term
accounts for the systematic drift of the vortices. At equil
rium, the drift precisely balances random scatterings and
distribution~26! is settled. More precisely, the condition th
the Maxwell-Boltzmann statistics~26! satisfies Eq.~45!
identically requires thatD andj be related according to th
relation

j5Dbg, ~46!

which is a generalization of the Einstein formula to the ca
of point vortices. A more rigorous justification of this rela
tion will be given in Sec. IV, where the diffusion coefficien
and the drift term are calculated explicitly.

B. Systematic drift: The result of a polarization process

According to the previous discussion, the relaxation o
point vortex towards statistical equilibrium can be describ
by a Fokker-Planck equation,

]P

]t
1^V&“P5“@D~“P1bgP“c!# ~47!

involving a diffusion term2D“P and a drift term

^V&drift52Dbg“c. ~48!

The drift is normal to the mean-field velocitŷV&52z
3“c of the vortices, and its direction, depending on t
sign of b, has important physical implications. To fix th
ideas, let us assume that all point vortices have positive
culation ~the opposite case leads to the same conclusi!.
Due to the mean-field velocity, a particular point vortex r
tates anticlockwise. At negative temperatures, the drift is
rected to its left and the vortex isattractedto the center of
the domain. On the contrary, at positive temperatures,
drift is directed to its right and the vortex isrejectedagainst
the boundary. Therefore, the effect of the drift is consist
with the Onsager thermodynamical approach and it provid
in addition, a physical mechanism to understand the org
zation of point vortices at negative temperatures. Forb50,
the medium is homogeneous and there is no drift. Equa
~47! reduces to a pure diffusion equation like in Re
@18,13,19#. Therefore, the drift occurs only in the presence
a background shear.

In stellar systems, the relaxation of the distribution fun
tion f (r ,v,t) is usually described by the Kramer
Chandrasekhar equation:

] f

]t
1v

] f

]r
1^F&

] f

]v
5

]

]v H DS ] f

]v
1bm fvD J , ~49!

which is a particular Fokker-Planck equation with a struct
analogous to Eq.~47!. In this analogy, the dynamical friction
experienced by a star as a result of close encounters@8#,

^F& friction52Dbmv, ~50!

is the counterpart of the systematic drift~48! experienced by
a point vortex in two-dimensional turbulence. The dynami
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friction can be viewed as the drag exerted on a test sta
the wake it induces in the field stars, as in a polarizat
process. We can use a similar approach to understand
origin of the drift. Let us consider a collection ofN point
vortices at statistical equilibrium with inverse temperatureb.
Whenb,0, the density of these ‘‘field’’ vortices decrease
from the center to the periphery of the domain. A ‘‘tes
vortex moving through this medium locally modifies the vo
ticity distribution and produces a polarization cloud th
amounts typically to a rotation of the surrounding vortice
This creates an excess of density behind it and a defici
density in front of it. Therefore, the retroaction of the fie
vortices leads to a drift of the test vortex directed inward. W
reach the opposite conclusion if the temperature is posit
When the system is homogeneous (b50 in a domain with
no special symmetry!, the polarization cloud induced by th
test vortex has no effect and the drift cancels out. Theref
a homogeneous system of point vortices remains homo
neous@18,13,19#.

C. The maximum entropy production principle

In Sec. IV, we shall derive the Fokker-Planck equati
~47! directly from the Liouville equation. However, we wan
to show first that the general structure of this equation can
understood from relatively simple thermodynamic arg
ments.

Let us rewrite Eq.~47! in the form

]^v&
]t

1^u&“^v&52“•J, ~51!

whereJ is an unknown diffusion current. This equation co
serves the circulation~24! provided thatJ•n̂50 on the do-
main boundary (n̂ is a unit vector normal to the boundary!.
The problem at hand consists in determining the expres
for J. Its exact expression depends on microscopic proce
and is therefore difficult to capture. However, it is easy
write down some macroscopic constraints that it must sati
These constraints are provided by the first and second p
ciples of thermodynamics, namely the conservation of
ergy and the increase of entropy. We shall find that th
constraints are very stringent and determine completely
structure of the diffusion current.

Taking the time derivative of Eqs.~20! and~22! and sub-
stituting for Eq.~51!, we obtain the constraints

Ė5E J•“cd2r50 ~52!

and

Ṡ52
1

gE J•“ ln^v&d2r>0. ~53!

We shall now introduce an optimization procedure known
the maximum entropy production principle~MEPP!. This
principle was introduced initially in the context of 2D turbu
lence by Robert and Sommeria@20#, but its domain of appli-
cability is very general and concerns, for example, the c
9-6
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of stellar systems@9,21#. This principle states that ‘‘out o
equilibrium, the system evolves so as to maximize its rate
entropy productionṠ while accounting for all the constraint
imposed by the dynamics, in particular the conservation
energyĖ50.’’ There is no precise justification for this prin
ciple and it is important therefore to confront the MEPP w
more rigorous methods, such as those of Sec. IV, to de
mine its domain of validity. In any case, the MEPP can
considered as a convenient tool to build relaxation equat
that are mathematically well-behaved and that can serv
numerical algorithms to calculate maximum entropy state

We seek, therefore, the optimal diffusion currentJ, which
maximizes the rate of entropy productionṠ at fixed energy.
In order to avoid the unphysical solutionuJu→1` with
J•“c50, we impose the additional constraint

J2<C~r ,t !, ~54!

where C is an upper bound which must exist but is n
known. The solution of the optimization problem is

J52D@“^v&1b~ t !g^v&“c#, ~55!

whereb(t) and D(r ,t) are Lagrange multipliers associate
with the constraints~52! and ~54!. When substituted in Eq
~51!, we obtain

]^v&
]t

1^V&“^v&5“„D@“^v&1b~ t !g^v&“c#….

~56!

This equation has the same form as the Fokker-Planck e
tion ~47!. Here, the diffusion term arises from the variatio
of entropy dṠ and the drift term is necessary to conser
energy. Note that the Einstein formula~46! is automatically
satisfied by this variational approach.

The time evolution of the inverse temperatureb(t) is de-
termined by the conservation of energy. Substituting the
fusion current~55! in the constraint~52!, we find

b~ t !52

E D“^v&•“cd2r

E Dg^v&~“c!2d2r
. ~57!

We can also check that the entropy monotonically increa
during the relaxation provided thatD>0. Indeed, using Eqs
~53!, ~55!, and~52!, we can easily establish that

Ṡ5E J2

Dg^v&
d2r>0. ~58!

At equilibrium, J50 and we recover the Boltzmann distr
bution ~26!.

Note that the optimal current~55! can be writtenJ
5x“a, wherea5 ln^v&1bgc is a ‘‘generalized potential’’
that is uniform at equilibrium. Therefore, the MEPP can
viewed as a variational formulation of the linear thermod
namics of Onsager, which relates the diffusion currents to
02630
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gradients of generalized potentials. However, the ME
gives a more elegant approach to the problem and, conce
a real importance to the constraints, it is easier to implem
in more complicated situations@20,9,22#. In addition, it
shows that the structure of the relaxation is determined
purely thermodynamic arguments. All explicit reference
the subdynamics is encapsulated in the diffusion coefficie
which is left unspecified~it appears as a Lagrange multiplie
related to an unknown bound on the diffusion current!. It
must therefore be calculated with a more microscopic mo
such as the one of Sec. IV.

IV. RELAXATION OF A POINT VORTEX IN A THERMAL
BATH

A. The Liouville equation

Let us consider a collection ofN11 point vortices with
identical circulationg. We select one of these vortices, fo
example point vortex 0, and call it the ‘‘test vortex.’’ Th
other vortices 1, . . . ,N will be refered to as the ‘‘field vorti-
ces.’’ Let m(r ,r1 , . . . ,rN ,t) denote the (N11)-particle dis-
tribution of the system, i.e.,

m~r ,r1 , . . . ,rN ,t !d2rd2r1•••d2rN

represents the probability that point vortex 0 will be in t
cell (r ,r1dr ), point vortex 1 in the cell (r1 ,r11dr1) . . . ,
and point vortexN in the cell (rN ,rN1drN) at time t. The
(N11)-particle distribution functionm(t) satisfies the Liou-
ville equation

]m

]t
1(

i 50

N

V i

]m

]r i
50, ~59!

whereV i is the velocity of vortexi produced by the othe
vortices according to Eqs.~6! and~7!. We also introduce the
one- andN-particle distribution functions defined by

P~r ,t !5E m~$r k%,t !)
k51

N

d2r k , ~60!

msys~r1 , . . . ,rN ,t !5E m~$r k%,t !d
2r . ~61!

The physical picture that we have in mind is that the t
vortex evolves in a ‘‘bath’’ of field vortices. Therefore, w
rewrite the distribution functionm in the suggestive form

m~r ,r1 , . . . ,rN ,t !5P~r ,t !msys~r1 , . . . ,rN ,t !

1m I~r ,r1 , . . . ,rN ,t !, ~62!

wherem I reflects the effect of correlations between the t
vortex and the field vortices. Physically, this term accou
for the polarization process described qualitatively in S
III B.

The Liouville equation~59! provides the correct starting
point for the analysis of the dynamics of our vortex syste
However, whenN is large, this equation contains much mo
information than one can interpret. Consequently, what
9-7
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would like to do is to describe the system in some aver
sense by a one-particle distribution function. In the previo
sections, we have indeed derived heuristically some differ
tial equation satisfied by this distribution function on t
basis of stochastic arguments. We shall now discuss the
nection of such heuristic theories with a more microsco
description of the system.

B. The projection operator formalism

Our first objective is to derive someexactkinetic equa-
tions satisfied byP(r ,t) andmsys(r1 , . . . ,rN ,t). This can be
achieved by using the projection operator formalism dev
oped by Willis and Picard@6#. This formalism was also use
by Kandrup@7# in the context of stellar dynamics to derive
generalized Landau equation describing the time evolutio
the distribution function of stars in an inhomogeneous m
dium. We shall just recall the main steps of the theory. M
details can be found in the original paper of Willis and Pica
@6# and in Kandrup@7#. To have similar notations, we setx
[$r% andy[$r1 , . . . ,rN%. Then, Eq.~62! can be set in the
form

m~x,y,t !5mR~x,y,t !1m I~x,y,t ! ~63!

with

mR~x,y,t !5 f ~x,t !g~y,t !, ~64!

where we have written f (x,t)[P(r ,t) and g(y,t)
[msys(r1 , . . . ,rN ,t). The Liouville equation is also cast i
the form

]m

]t
52 iLm52 i ~L01Lsys1L8!m, ~65!

whereL0 and Lsys act, respectively, only on the variablesx
andy, whereas the interaction LiouvillianL8 acts upon both
x andy ~the complex numberi is here purely formal and ha
been introduced only to have the same notations as R
@6,7#!.

Following Willis and Picard, we introduce the time
dependent projection operator,

P~x,y,t !5g~y,t !E dy1 f ~x,t !E dx

2 f ~x,t !g~y,t !E dxE dy. ~66!

We can easily check that

P~x,y,t !m~x,y,t !5mR~x,y,t !, ~67!

@12P~x,y,t !#m~x,y,t !5m I~x,y,t !. ~68!

We also verify thatP is a projection in the sense thatP2(t)
5P(t). Applying P and 12P on the Liouville equation~65!,
we obtain the coupled equations

] tmR~x,y,t !52 iPLmR2 iPLm I ~69!
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] tm I~x,y,t !52 i ~12P!LmR2 i ~12P!Lm I . ~70!

These equations should be compared with Eqs.~8! and ~9!,
which appear in the quasilinear theory of 2D turbulence@23#.
In the present context, Eqs.~69! and ~70! describe the sepa
ration between a ‘‘macrodynamics’’ and a ‘‘subdynamics
In the quasilinear theory, Eqs.~8! and ~9! describe the evo-
lution of the ‘‘coarse-grained’’ and ‘‘fine-grained’’ compo
nents of the vorticity.

Introducing the Greenian

G~ t,t8![expH 2 i E
t8

t

dt9@12P~ t9!#LJ , ~71!

we can immediately write down a formal solution of E
~70!, namely

m I~x,y,t !52E
0

t

dt8G~ t,t8!i @12P~ t8!#LmR~x,y,t8!,

~72!

where we have assumed that initially the particles are un
related so thatm I(x,y,0)50. Substituting form I(x,y,t) from
Eq. ~72! in Eq. ~69!, we obtain

] tmR~x,y,t !52 iPLmR2E
0

t

dt8P~ t !LG~ t,t8!

3@12P~ t8!#LmR~x,y,t8!. ~73!

The integration overy will yield an equation describing the
evolution of f. Using some mathematical properties of t
projection operator~66!, the final result can be set in the nic
symmetrical form given by Willis and Picard@6#:

] t f ~x,t !1 iL 0f 1 i ^L8&sysf

52E
0

t

dt8E dyD tL8G~ t,t8!D t8L8g~y,t8! f ~x,t8!,

~74!

where the notations stand for

^L8&sys5E dy8L8~x,y8!g~y8,t !, ~75!

^L8&05E dx8L8~x8,y! f ~x8,t !, ~76!

D tL85L82^L8&sys2^L8&0 . ~77!

Similarly, after integrating overx, we find the equation sat
isfied byg @6#,
9-8
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] tg~y,t !1 iL sysg2 i ^L8&1g

52E
0

t

dt8E dxD tL8G~ t,t8!D t8L8g~y,t8! f ~x,t8!.

~78!

C. Application to the point vortex system

The previous theory is completely general and we n
consider its application to a system of point vortices. Let
first rewrite the Liouville equation~59! in a form that sepa-
rates the contribution of the test vortex from the contribut
of the field vortices:

]m

]t
1(

i 51

N

V~ i→0!
]m

]r
1(

i 51

N

V~0→ i !
]m

]r i

1(
i 51

N

(
j 51,j Þ i

N

V~ j→ i !
]m

]r i
50. ~79!

The different operators that arise in the decomposition~65!
are

iL 050, ~80!

iL sys5(
i 51

N

(
j Þ i ,0

V~ j→ i !
]

]r i
, ~81!

iL 85(
i 51

N H V~ i→0!
]

]r
1V~0→ i !

]

]r i
J . ~82!

The mean-field velocity created by the field vortexi on
the test vortex is denoted by

^V~ i→0!&5E P~r i ,t !V~ i→0!d2r i . ~83!

Similarly,

^V~0→ i !&5E P~r ,t !V~0→ i !d2r ~84!

denotes the mean-field velocity created by the test vortex
the field vortexi. Finally, the total mean-field velocity expe
rienced by the test vortex is given by

^V&5(
i 51

N

^V~ i→0!&5(
i 51

N

^V~1→0!&5N^V~1→0!&,

~85!

where the second equality follows from the identity of t
point vortices.

We are now ready to evaluate the quantities~75!, ~76!,
and ~77!. After straightforward integration by parts, we fin
successively

i ^L8&sys5^V&
]

]r
5(

i 51

N

^V~ i→0!&
]

]r
, ~86!
02630
s

n

i ^L8&05(
i 51

N

^V~0→ i !&
]

]r i
, ~87!

iD tL85(
i 51

N

$V~ i→0!2^V~ i→0!&%
]

]r
1(

i 51

N

$V~0→ i !

2^V~0→ i !&%
]

]r i
. ~88!

Introducing the velocity fluctuations,

V~ i→0!5V~ i→0!2^V~ i→0!&, ~89!

V~0→ i !5V~0→ i !2^V~0→ i !&, ~90!

we can rewrite our expression forD tL8 in the form

iD tL85(
i 51

N

V~ i→0!
]

]r
1(

i 51

N

V~0→ i !
]

]r i
. ~91!

Substituting these results in Eq.~74!, we obtain the fol-
lowing kinetic equation for the one-particule distributio
function of a vortex system:

]P

]t
1^V&

]P

]r
5E

0

t

dt8E )
k51

N

d2r k(
i 51

N

V~ i→0!
]

]r

3G~ t,t8!H (
j 51

N

V~ j→0!
]

]r

1(
j 51

N

V~0→ j !
]

]r j
J P~r ,t8!msys~$r k%,t8!

~92!

or, alternatively,

]P

]t
1^V&

]P

]r

5
]

]r mE0

t

dtE )
k51

N

d2r k(
i 51

N

(
j 51

N

V m~ i→0!G~ t,t2t!

3S V n~ j→0!
]

]r n
1Vn~0→ j !

]

]r j
nD

3P~r ,t2t!msys~$r k%,t2t!, ~93!

where the Greek indices refer to the components ofV in a
fixed system of coordinates. We can note that Eq.~93! al-
ready shares some analogies with the Fokker-Planck e
tion of Sec. III. Indeed, the first term on the right-hand si
corresponds to a diffusion and the second term to a drift.
a passive particle,V n(0→ j )50 and the drift cancels out, a
expected.
9-9
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D. The thermal bath approximation

Equation~93! is anexactdifferential equation forP(r ,t).
However, this equation is not directly soluble since the u
kown function msys($r k%,t) is given by an equation of the
form ~78! depending in turn onP(r ,t). We have therefore to
solve the coupled system~74!–~78!. This system bears ex
actly the same information as the initial Liouville equatio
~65! and, without further simplification, is untractable.

To reduce the complexity of the problem, we shall imp
ment a ‘‘thermal bath approximation.’’ We assume that t
field vortices are in statistical equilibrium with inverse tem
peraturebeq. Therefore, theN-particle distribution function
msys($r k%) can be approximated by a product ofN one-
particle distribution functionsPeq given by the Maxwell-
Boltzmann statistics~26!. In other words, we make the ap
proximation

msys~r1 , . . . ,rN ,t !.meq~r1 , . . . ,rN! ~94!

with

meq~r1 , . . . ,rN!5)
k51

N

Peq~r k!5)
k51

N

Ake
2beqgceq(rk),

~95!

whereceq is solution of the Poisson equation~2! with the
equilibrium vorticity ^v&eq5NgPeq. Substituting explicitly
for the Boltzmann distribution from Eq.~95! in Eq. ~93!, we
obtain

]P

]t
1^V&eq

]P

]r

5
]

]r mE0

t

dtE )
k51

N

d2r k(
i 51

N

(
j 51

N

V m~ i→0!G~ t,t2t!

3S V n~ j→0!
]

]r n
2beqgVn~0→ j !

]ceq

]r j
n D

3P~r ,t2t!)
k51

N

Peq~r k!, ~96!

where^ &eq denotes the average with respect to the equi
riun distributionPeq. Explicating the action of the Greenian
we can rewrite our Eq.~96! in the form

]P

]t
1^V&eq

]P

]r
5

]

]r mE0

t

dtE )
k51

N

d2r k(
i 51

N

(
j 51

N

V m~ i→0,t !

3S V n~ j→0,t2t!
]

]r n

2beqgVn~0→ j ,t2t!
]ceq

]r j
n

@r j~ t2t!# D

02630
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3P„r ~ t2t!,t2t…)
k51

N

Peq@r k~ t2t!#,

~97!

where the retarded velocityV( j→ i ,t2t) must be viewed as
an explicit function of time. More precisely,V( j→ i ,t2t) is
a short-hand notation forV@r j (t2t)→r i(t2t)#, where
r i(t2t) denotes the position at timet2t of the i th point
vortex located inr i[r i(t) at time t. The trajectories of the
point vortices betweent2t andt are determined by the com
plicated GreenianG(t,t2t) defined in Eq.~71!. We need
therefore to solve the exact Kirchhoff-Hamilton equations
motion~8!. In fact, to a good approximation, we can consid
that the point vortices are purely advected by the equilibri
mean-field velocity^V&eq. Indeed, whenN→`, we have
already indicated that the velocity fluctuationV is much
smaller than the mean-field velocitŷV&eq. Therefore, we
can replace the exact GreenianG by a smoother Greenian
^G&eq, which would be obtained if the point vortices wer
moving in the velocity field created by the equilibrium di
tribution function meq. Formally, this Greenian is con
structed with the averaged Liouville operator̂L&eq

[( i 50
N ^V i&eq(]/]r i).

In this approximation, the correlations involving two di
ferent vortex pairs vanish and the equation can be simpli
considerably. Using the results of Appendix B@see, in par-
ticular, Eq.~B11!#, we find

]P

]t
1^V&eq

]P

]r
5(

i 51

N
]

]r mE0

t

dtE d2r iV
m~ i→0,t !

3S Vn~ i→0,t2t!
]

]r n

2beqgVn~0→ i ,t2t!

3
]ceq

]r i
n

@r i~ t2t!# D
3P„r ~ t2t!,t2t…Peq~r i !, ~98!

where we have usedPeq@r i(t2t)#5Peq(r i) since Peq
5 f (ceq) is constant along a streamline and the particles
assumed to follow the streamlines in a first approximatio
Since the vortices are identical, we also have

]P

]t
1^V&eq

]P

]r
5N

]

]r mE0

t

dtE d2r1Vm~1→0,t !

3S Vn~1→0,t2t!
]

]r n

2beqgVn~0→1,t2t!
]ceq

]r 1
n

3@r1~ t2t!# D

9-10
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3P„r ~ t2t!,t2t…Peq~r1!. ~99!

Noting that the integral is dominated by the divergence of
productVmVn when r1→r , we can make a ‘‘local approxi
mation’’ and replace]ceq/]r 1

n(r1) andPeq(r1) by their val-
ues taken inr . For the same reason, we can neglect vor
images and replace the KernelV(0→1) by its singular part
~7! satisfyingV(0→1)52V(0→1). With these approxima
tions, the kinetic equation~99! takes the form

]P

]t
1^V&eq

]P

]r
5N

]

]r mE0

t

dtE d2r1Peq~r !Vm~1→0,t !

3Vn~1→0,t2t!S ]P

]r n
„r ~ t2t!,t2t…

1beqgP„r ~ t2t!,t2t…
]ceq

]r n
@r ~ t2t!# D .

~100!

E. The Fokker-Planck equation

1. Unidirectionnal flow

We will now see how the preceding equation can be s
plified for particular equilibrium flows. We shall first con
sider the case of a unidirectional floŵV&eq5Veq(y) x̂ pro-
duced by a vorticity distribution̂ v&eq(y). If we restrict
ourselves to solutions of the formP5P(y,t), the kinetic
equation~100! becomes

]P

]t
5N

]

]yE0

t

dtE d2r1Peq~y!Vy~1→0,t !Vy~1→0,t2t!

3S ]P

]y
~y,t2t!1beqgP~y,t2t!

]ceq

]y
~y! D , ~101!

where we have usedy(t2t)5y(t)5y since the point vorti-
ces follow the streamlines of the equilibrium flow. This equ
tion can be rewritten in the form

]P

]t
5

]

]yE0

t

dtC~t!S ]P

]y
~y,t2t!1beqgP~y,t2t!

]ceq

]y D ,

~102!

where

C~t![Cyy~t!5NE d2r1Vy~1→0,t !Vy~1→0,t2t!Peq~y!

~103!

is the velocity autocorrelation function. In Appendix C 1, it
found that

C~t!5
Ng2

8p
ln N

1

11
1

4
S2~y!t2

Peq~y!, ~104!
02630
e
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where

S~y!52
d

dy
^V&eq~y! ~105!

is the local shear of the flow, equal here to the vorticity. No
that the velocity autocorrelation function decays liket22 for
t→1` @5#.

Equation ~102! is a non-Markovian equation since th
probability P(y,t) at time t depends on the probability
P(y,t2t) at earlier times through an integration overt. Ac-
cordingly, the present study, which explicitly takes into a
count memory effects, is more general than the stocha
model presented in Sec. III A. However, if we implement
Markov approximation and replaceP(y,t2t) by P(y,t), we
recover the Fokker-Planck equation of Sec. III:

]P

]t
5

]

]yFDS ]P

]y
1beqgP

]ceq

]y D G ~106!

with a diffusion coefficient

D[Dyy5NE
0

1`

dtE d2r1Vy~1→0,t !

3Vy~1→0,t2t!Peq~y! ~107!

and a drift term

hy[2^Vy&drift5beqgD
]ceq

]y
. ~108!

The drift coefficient is given by an Einstein relation as e
pected from the general considerations of Sec. III A. T
diffusion coefficient is expressed as a Kubo formula, i.e.,
the integral of the velocity correlation function~see Appen-
dix B!. In Appendix C 1, it is found that~see also Ref.@5#!

D5
1

8
Ng2

1

uS~y!u
ln NPeq~y!. ~109!

The reason for the logarithmic divergence is explained
Appendix A and in Ref.@13#.

2. Axisymmetrical flow

We now consider the case of an axisymmetrical equi
rium flow such that̂ V&eq5^V&eq(r )êu . This flow is gener-
ated by an equilibrium vorticity field̂v&eq(r ). If we restrict
ourselves to solutions of the formP5P(r ,t), the kinetic
equation~100! simplifies in

]P

]t
5N

1

r

]

]r
r E

0

t

dtE d2r1Peq~r !Vr (t)~1→0,t !

3Vr (t2t)~1→0,t2t!

3S ]P

]r
~r ,t2t!1beqgP~r ,t2t!

]ceq

]r
~r ! D ,

~110!
9-11
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where we have usedr (t2t)5r (t)5r since the point vorti-
ces follow the streamlines of the equilibrium flow. Furthe
more, Vr (t) and Vr (t2t) denote the radial components
V(1→0) at timest andt2t in a polar system of coordinate
„êr(t),êu(t)… moving with the test vortex. Equation~110! can
be rewritten

]P

]t
5

1

r

]

]r
r E

0

t

dtC~t!S ]P

]r
~r ,t2t!1beqgP~r ,t2t!

]ceq

]r D ,

~111!

whereC(t) is the velocity autocorrelation function

C~t!5NE d2r1Vr (t)~1→0,t !Vr (t2t)~1→0,t2t!Peq~r !.

~112!

In Appendix C 2, it is found that

C~t!5
Ng2

8p
ln N

1

11 1
4 S2~r !t2

Peq~r !, ~113!

where

S~r !5r
d

dr S ^V&eq~r !

r D ~114!

is the local shear of the flow.
If we ignore memory effects, we obtain the Fokker-Plan

equation,

]P

]t
5

1

r

]

]r F rD S ]P

]r
1beqgP

]ceq

]r D G ~115!

with a diffusion coefficient

D5NE
0

1`

dtE d2r1Vr (t)~1→0,t !

3Vr (t2t)~1→0,t2t!Peq~r ! ~116!

and a drift term

h r52^Vr&drift5beqgD
]ceq

]r
. ~117!

Explicitly, the diffusion coefficient has the form~see Appen-
dix C 2 and Ref.@5#!

D5 1
8 Ng2

1

uS~r !u
ln NPeq~r !. ~118!

3. The general case

We can show in the general case that the relaxation of
test vortex is described by the Fokker-Planck equation

]P

]t
1^Veq&“P5“@D~“P1beqgP“ceq!# ~119!

with a diffusion coefficient
02630
k

e

D5
g

8

1

uS~r !u
ln N^v&eq, ~120!

whereuS(r )u52A2det(S) is the local shear of the flow an
and det(S) is the determinant of the stress tensorSmn ~see
Sec. V C!. In the regions where the shear cancels out,
approximations clearly break down. In particular, we can
calculate the Kubo integral by assuming that the vortic
follow the streamlines of the equilibrium flow. This is be
cause, for a local solid rotation, the vortices always remain
the same relative distance and the correlation time is infin
In that case, it is necessary to take into account the disper
of the vortices. An alternative derivation of the diffusion c
efficient can be obtained by analyzing the statistics of vel
ity fluctuations created by a random distribution of po
vortices@13#. When the differential rotation of the vortices
neglected@which corresponds to the opposite limit of th
leading to Eq.~120!#, we obtain~see Ref.@13# and Appendix
A!

D;gAln N. ~121!

Clearly, a more complete study should take into account
multaneously the effect of the shear and the dispersion of
vortices to match the two formulas~120! and ~121!.

For t→1`, the distribution functionP(r ,t) of the test
vortex converges towards the Maxwell-Boltzmann statist
~26!. The time of relaxation corresponds typically to the tim
needed by the test vortex to diffuse over a distanceR, the
system size. Therefore,t relax;R2/D, whereD;g ln N is the
order of magnitude of the diffusion coefficient given by E
~120!. UsingG5Ng and introducing the dynamical timetD
;^v&21;R2/G, we obtain the estimate

t relax;
N

ln N
tD . ~122!

Since the statistical description is expected to yield relev
results for largeN, we conclude that the relaxation of poin
vortices towards the Boltzmann distribution is a very slo
process. It is plausible that a more violent relaxation may
at work in the system. This problem is discussed more s
cifically in the conclusion.

In the previous calculations, we have assumed that
distribution of the field vortices is given by the Maxwel
Boltzmann statistics~26!, which corresponds to statistica
equilibrium. In the case of an arbitrary background distrib
tion Peq the expression of the drift is

^V&drift5D“ ln Peq, ~123!

whereD is still given by Eq.~120!. SinceD.0, the drift is
always directed along the density gradient. The estimate
the time of relaxation is not changed in this more gene
situation.

V. A GENERALIZED KINETIC EQUATION

In the preceding section, we have described the relaxa
of a test vortex in a ‘‘bath’’ of field vortices at statistica
9-12
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equilibrium. We would like now to relax this thermal ba
approximation in order to obtain a generalized kinetic eq
tion describing the evolution of the whole system.

A. The factorization hypothesis

If the vortices are initially decorrelated, then, for suf
ciently short times, they will remain decorrelated. Th
means that the (N11)-particle distribution function can b
factorized in a product of (N11) one-particle distribution
functions:

m~r ,r1 , . . . ,rN ,t !5)
k50

N

P~r k ,t !. ~124!

If we integrate the Liouville equation~59! on the positions of
the N vortices 1, . . . ,N and use the factorization~124!, we
directly obtain

]P

]t
1^V&“P50. ~125!

Therefore, for sufficiently short times, the average vortic
^v& satisfies the 2D Euler equation. However, at later tim
the distribution functionm differs from the pure produc
~124! and the Euler equation does not provide a good
proximation anymore. In Sec. IV A, we have determined
exact equation~93! satisfied by the one-particle distributio
function at any time. This equation is not closed, howev
since it involves theN-vortex distribution functionmsys. We
shall close the system by assuming thatmsys can still be
approximated by a product ofN one-particle distribution
functions:

msys~r1 , . . . ,rN ,t !.)
k51

N

P~r k ,t !, ~126!

but, contrary to Sec. IV D, the one-particle distribution fun
tion P(r k ,t) is not ascribed to the equilibrium valuePeq.
Physically, the decomposition~62! and ~126! assumes tha
the correlations that develop between the vortices~term m I!
are due uniquely to the polarization cloud imposed by e
individual vortex. Without this polarization, the vortice
would be uncorrelated~termmsys). In particular, this decom-
position does not take into account three-body encount
which can play a crucial role in the dynamics of vortices~in
particular when the system is neutral and homogeneous
Refs. @24,19#!. These high-order correlations develop
longer time scales and may be neglected in a first appro

The approximation~126! introduced in Eq.~93! leads to a
generalized kinetic equation,
02630
-

s,

-
n

r,
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rs,

ee

h.

]P

]t
1^V&

]P

]r

5
]

]r mE )
k51

N

d2r kE
0

t

dt(
i 51

N

(
j 51

N

V m~ i→0!G~ t,t2t!

3S V n~ j→0!
]

]r n
1Vn~0→ j !

]

]r j
nD

3P~r ,t2t!)
k51

N

P~r k ,t2t!. ~127!

Repeating the steps leading from Eq.~96! to Eq. ~99!, we
obtain

]P

]t
1^V&

]P

]r
5N

]

]r mE0

t

dtE d2r1Vm~1→0! t

3H Vn~1→0!P1

]P

]r n

1Vn~0→1!P
]P1

]r 1
n J

t2t

, ~128!

whereP5P(r ,t) and P15P(r1 ,t). We also recall that be-
tween t and t2t, the trajectories of the particles are dete
mined from the smooth velocity field created by the vortic
distribution ^v&5NgP(r ,t). This non-Markovian integrod-
ifferential equation is similar to the equation obtained
Chavanis@23# in two-dimensional turbulence using a quas
linear theory of the Euler-Poisson system. It is shown
Appendix D that this equation rigorously conserves angu
momentum in a circular domain and linear impulse in
channel~or in an infinite domain!. However, under this form,
it is not possible to prove the conservation of energy and
H theorem. In our previous investigation of the problem@23#,
we have considered a somewhat crude approximation, w
amounts to neglecting memory effects in Eq.~128!. We
beleived that this approximation would not introduce a
significant error, but, as we shall see, we were wrong: s
an approximation breaks the conservation of energy.

If we assume that the decorrelation timet is short~which
does not need to be the case! and we implement a strong
Markov approximation, we obtain

]P

]t
1^V&

]P

]r
5

Nt

2

]

]r mE d2r1Vm~1→0!H Vn~1→0!P1

]P

]r n

1Vn~0→1!P
]P1

]r 1
n J . ~129!

In the case of an infinite domain,V(0→1)52V(0→1) and
we have the further simplification
9-13
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]P

]t
1^V&

]P

]r
5

Ng2

8p2
t

]

]r mE d2r1K8mn~j!S P1

]P

]r n

2P
]P1

]r 1
n D ,

~130!

where

K8mn~j!5
j'

mj'
n

j4
5

j2dmn2jmjn

j4
~131!

andj5r12r ~we also recall thatj' is the vectorj rotated by
1p/2). To arrive at Eq.~131!, we have explicitly used the
form of the kernel~7!, and to get the second equality w
have used the fact that we are in two dimensions. Note
the symmetrical form of Eq.~130! is reminiscent of the Lan-
dau equation introduced in plasma physics and in stellar
namics @7#. In this analogy, the positionr of the vortices
plays the role of the velocityv of the electric charges o
stars. Therefore, we can directly infer the conservation
linear impulse P'5*vrd2r and angular momentumL
5*vr 2d2r , which play, respectively, the role of impulseP
5* f vd3v and kinetic energyK5* f (v2/2)d3v in plasma
physics. In addition, we can prove a H theorem for the Bolt-
zmann entropy~22! exactly like for the Landau equation
Finally, we can show that the solutions of Eq.~130! converge
towards the Gaussian vortex~the equivalent of the Maxwell-
ian distribution in plasma physics withr in place ofv):

P~r !5Ae2(1/2)ag(r2r0)2
, ~132!

which is the maximum entropy state at fixed circulation, a
gular momentum, and impulse. It is in general different fro
the Boltzmann distribution~26! with the relative stream
functionc85c1(V/2)r 22U'•r . This clearly indicates tha
Eq. ~129! doesnot conserve the meanfield energy~20!. It
may happen, however, that the energy is approximately c
served if we start from an initial condition with a value
energyE0 corresponding tob→0, V→1`, anda5bV/2
finite at equilibrium. In that case, Eq.~132! is the maximum
entropy state at fixedG, L, andE0 ~the conservation of im-
pulse can be satisfied trivially by taking the center of vort
ity as the origin of our system of coordinates!. However, ifE
differs fromE0 by a large amount, the kinetic equation~129!
will not correctly describe the evolution of the system f
late times.

Now, if we account properly for memory effects in E
~128!, we can obtain a more general equation that guaran
in addition the conservation of energy and is therefore m
satisfactory. In the case of an axisymmetrical flow, it is p
sible to calculate the memory function appearing in E
~128! explicitly if we assume that the correlation time
smaller ~but not necessarilymuchsmaller! than the typical
time on which the average vorticity changes appreciably
this approximation, the point vortices follow, betweent and
t2t, circular trajectories with angular velocityV(r ,t)
5^Vu&(r ,t)/r , and Eq.~128! simplifies in ~see Appendix E!
02630
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]P

]t
52

Ng2

4r

]

]r E0

1`

r 1dr1d~V2V1!lnF12S r ,

r .
D 2G

3H 1

r
P1

]P

]r
2

1

r 1
P

]P1

]r 1
J , ~133!

whereV5V(r ,t), V15V(r 1 ,t), andr . (r ,) is the biggest
~smallest! of r and r 1. The angular velocity is related to th
vorticity by

^v&5
1

r

]

]r
~Vr 2!. ~134!

Similarly, in the case of a unidirectional flow, we can assu
that, betweent and t2t, the point vortices follow linear
trajectories with velocitŷ V&5^V&(y,t)ex . This leads to the
kinetic equation~see Appendix E!

]P

]t
5

Ng2

4

]

]yE2`

1`

dy1d~V12V!E1S 2uy12yu
L D

3S P1

]P

]y
2P

]P1

]y1
D , ~135!

whereV5^V&(y,t) andV15^V&(y1 ,t). The functionE1(x)
is the exponential integral andL is an upper cutoff necessar
in that case~see Appendix E!. We also recall that the averag
velocity is related to the vorticity by

^v&52
]

]y
^V&. ~136!

We can remarkably propose an approximation of the g
eral kinetic equation~128! which encompasses both the ax
symmetric form ~133! and the unidirectional form~135!.
Memory effects are not neglected, unlike in Eq.~130!, but
they are simplified in a way which preserves all the cons
vation laws of the system~as discussed below!. We propose
the generalized kinetic equation:

]P

]t
1^V&“P5

Ng2

8

]

]r mE d2r1Kmnd~j•v!

3S P1

]P

]r n
2P

]P1

]r 1
n D ~137!

with

Kmn~j!5
j'

mj'
n

j2
5

j2dmn2jmjn

j2
~138!

andj5r12r , v5^V&(r1 ,t)2^V&(r ,t). For specific applica-
tions, it may be necessary to introduce a shielding of
form ~E39! in the interaction between vortices. This shiel
ing arises naturally in geophysics in the ‘‘quasigeostrop
approximation.’’ In that case, the tensorKmn is replaced by
(1/L)K1(j/L)j'

mj'
n /j , where K1 is the modified Besse

function of first order andL is an upper cutoff~called the
9-14



s

is-
ll a
e
a
ra

th

dr
-

n

th
ri
n
e

l o

ic

o

c

n
to
itl

em
e

ca
e

-

,

f

to

e H

of

ing

on

KINETIC THEORY OF POINT VORTICES: . . . PHYSICAL REVIEW E64 026309
Rossby radius in geophysics!, which plays the same role a
the Debye length in plasma physics.

Equation~137! is not exact, in a strict sense, yet it sat
fies all the conservations laws of the vortex system as we
a H theorem~Sec. V B!. This is very gratifying and can hav
important practical applications. It is remarkable that we c
write down an approximate kinetic equation in the gene
case without being required to specify the trajectory of
point vortices betweent and t2t. In fact, to arrive at Eq.
~137!, we have made implicitly two approximations.~i! We
have assumed that the vorticity field does not change
matically when we follow the vortices in their motion be
tween t and t2t. ~ii ! After the time integration has bee
effected, the nonuniversal functionVn(1→0,t2t) gives rise
to a logarithmic term, which has been replaced by 1 in
subsequent calculations. This term produces a subloga
mic correction that is flow-dependent and that has been
glected. It is on account of this weak dependence that a g
eral kinetic equation can be obtained. For axisymmetrica
unidirectionnal flows, Eq.~137! reduces to Eqs.~133! and
~135! with ln„ur 12r u/(r 11r )… andK0(uy2y1u/L) instead of
ln„12(r , /r .)2

… and E1(2uy2y1u/L). This discrepency is
not too severe~these functions have a similar logarithm
behavior! so our approximations are reasonable.

From Eqs.~133!, ~135!, and ~137!, it is clear that the
relaxation towards equilibrium is due to a phenomenon
resonance. Only the pointsr1 satisfying the conditionj•v
50 with r1Þr will contribute to the diffusion current inr . In
the axisymmetrical case, this condition of resonance redu
to V(r 1)5V(r ) and in the unidirectional case toV(y1)
5V(y). These conditions of resonance had never been
ticed previously. Further work on the subject will have
make these criteria more precise by computing explic
‘‘resonance lines’’ in two-dimensional real flows.

B. Conservation laws and H theorem

We now derive the conservation laws and the H theor
satisfied by Eq.~137!. First of all, the conservation of th
circulation is straightforward since Eq.~137! can be written
in the form of a continuity equation~D1!. To prove the con-
servation of angular momentum, we start from Eq.~D4!,
substitute for Eq.~137!, permut the dummy variablesr and
r1, and add the resulting expressions. This yields

L̇5
N2g3

8 E d2rd2r1Kmnjmd~j•v!S P1

]P

]r n
2P

]P1

]r 1
n D .

~139!

But, from Eq.~138!, we immediately verify that

Kmnjm50. ~140!

This proves the conservation of angular momentum. We
prove the conservation of linear impulse in a similar mann
Starting from Eq.~D16!, substituting for Eq.~137!, permut-
ing the dummy variablesr andr1, and adding the two result
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ing expressions yieldsṖ50. For the conservation of energy
we start from Eq.~52! and follow the by now familiar pro-
cedure. This yields

Ė5
N2g3

16 E d2rd2r1Kmnv'
md~j•v!S P1

]P

]r n
2P

]P1

]r 1
n D .

~141!

Considering the form of the tensor~138!, we have

Kmnv'
m5

j'
n

j2
~j•v!. ~142!

When substituted in Eq.~141!, we see that the occurrence o
the d function in the kinetic equation impliesĖ50. Finally,
for the rate of entropy production, we have, according
Eqs.~53! and ~137!,

Ṡ5
N2g2

8 E d2rd2r1

1

PP1
P1

]P

]r m
Kmnd~j•v!

3S P1

]P

]r n
2P

]P1

]r 1
n D . ~143!

Permuting the dummy variablesr and r1 and adding the
resulting expression to Eq.~143!, we get

Ṡ5
N2g2

16 E d2rd2r1

1

PP1
d~j•v!

3S P1

]P

]r m
2P

]P1

]r 1
m D KmnS P1

]P

]r n
2P

]P1

]r 1
n D .

~144!

Now, for any vector, AmKmnAn5(A•j')2/j2>0. This
proves a H theorem (Ṡ>0) for our kinetic equation~137!. It
should be emphasized that the conservation laws and th
theorem result from thesymmetryof the kinetic equation
~and the condition of resonance! and not from formal
Lagrange multipliers as in the thermodynamical approach
Sec. III C. In addition, the H theorem isprovedby our ap-
proach instead of beeing postulated. This is more satisfy
on physical grounds.

It remains for one to show that the Boltzmann distributi

P5Ae2bg[c1(V/2)r 22U'•r ] ~145!

is a stationary solution of Eq.~137!. Noting that

]P

]r n
52bgS ]c

]r n
1Vr n2U'

n D P, ~146!

we have successively
9-15
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KmnS P1

]P

]r n
2P

]P1

]r 1
n D 5bgPP1Kmn~v'

n 1Vjn!

5bgPP1

j'
m

j2
~j•v!, ~147!

where we have used Eqs.~140! and~142!. When substituted
in Eq. ~137!, we find that the right-hand side cancels out d
to the d function. The advective term is also zero sinceP
5 f (c8). Therefore, the distribution~145! is a stationary so-
lution of Eq. ~137!. Note, however, that this is not the on
solution. Any stationary solution satisfyingj•vÞ0 for any
couple of pointsr ,r1 ~with rÞr1) is a solution of Eq.~137!.
Physically, this implies that the system needs sufficien
strong resonances to relax towards the maximum entr
state. If this is not realized, it will be frozen in a sort
‘‘metastable’’ equilibrium. This may explain why the max
mum entropy state is not always reached in two-dimensio
turbulence. For example, for a unidirectional flow with^v&
positive or negative everywhere, the velocity field is mono
nous@see Eq.~136!# and the condition of resonance cann
be satisfied. The evolution of the system will require no
trivial correlations between point vortices that are not tak
into account in the present approch. One would need to
place the factorization hypothesis~126! by a product of two-
point or three-point correlation functions. However, it
plausible that these correlations develop on a very long t
scale, so it remains a matter of debate to decide whether
are really relevant for the dynamics or not.

In the context of 2D turbulence described by the Eul
Poisson system, the quasilinear theory developed by C
vanis yields, instead of Eq.~137!,

]v̄

]t
1u•“v̄5

e2

8

]

]r mE d2r 8Kmnd~j•v!

3H v̄8~s02v̄8!
]v̄

] r m2v̄~s02v̄ !
]v̄8

]r 8mJ ,

~148!

where Kmn is defined by Eq.~138! and v̄5v̄(r ,t), v̄8

5v̄(r 8,t). In addition to the previous conservation laws, th
equation guarantees that the coarse-grained vorticityv̄ re-
mains bounded by the maximum value of the initial distrib
tion, i.e.,v̄<s0. This equation satisfies a H theorem for the
Fermi-Dirac entropy introduced by Miller-Robert-Somme
at equilibrium@26,27#. Our approach provides, therefore, a
other way of justifying their results from a dynamical poi
of view. Equation~148! is written for a single level of vor-
ticity s0, but it is possible to extend the quasilinear theory
an arbitrary distribution of vorticity levels~in preparation!.
Our equations should provide, therefore, an interesting
useful parametrization of the 2D Euler equation. It should
recalled in that respect that the usual turbulent diffus
nDv̄ introducedad hoc on the right-hand side of the 2D
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Euler equation in order to smooth out the small scales
prevent numerical instabilities breaks the conservation la
of the inviscid dynamics. This isnot the case for our equa
tion ~148!: not only does it smooth out the unresolved sca
~as exemplified by the existence of a H theorem!, but it also
satisfies all the conservation laws of the inviscid dynam
and respects the invariance properties of the Euler equa
~invariance by translation and rotation of the coordinat
Galilean invariance, and invariance by rotation of the ref
ential!. In addition, there is no free parameter in our theo
except the coarse-graining meshe ~or resolution scale!,
which depends on the situation contemplated. Different
tempts had been made previously to obtain an equation
isfying all these requirements, but only partial results we
obtained@20,9,22,5,23#.

C. Connection with the Fokker-Planck equation

Equation~137! can be considered as our final result, b
we wish to show that a direct connection with the Fokk
Planck equation of Sec. IV can be found. Introducing a d
fusion tensor

Dmn5
Ng2

8 E d2r1Kmnd~j•v!P1 ~149!

and a drift term

hm52
Ng2

8 E d2r1Kmnd~j•v!
]P1

]r 1
n

, ~150!

Eq. ~137! can be rewritten in the more illuminating form:

]P

]t
1^V&“P5

]

]r m FDmn
]P

]r n
1PhmG , ~151!

similar to the general Fokker-Planck equation~40!. Note,
however, that Eq.~151! is an integrodifferential equation
since the density probabilityP(r ,t) in r at timet depends on
the value of the whole distribution of probabilityP(r1 ,t) at
the same time by an integration overr1. In contrast, the
Fokker-Planck equation~47! is a differential equation. The
usual way to transform an integrodifferential equation into
differential equation is to make a guess for the functi
P(r1) appearing under the integral sign and refine the gu
by successive iterations. In practice, we simply make o
sensible guess. Therefore, if we are close to equilibrium
seems natural to replace the functionP1 appearing in the
integrals by the Boltzmann distribution,

P~r1!5Ae2bgc8(r1). ~152!

This corresponds to the ‘‘thermal bath approximation’’
Sec. IV D: the vortices have not yet relaxed completely,
when we focus on the relaxation of a given point vort
~described byP), we can consider, in a first approximatio
that the rest of the system~described byP1) is at equilib-
rium. Within this approximation, the diffusion coefficien
and the drift simplify in
9-16
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hm5bgDmn
]c8

]r n
, ~153!

Dmn5
Ng2

8
P~r ,t !E Kmnd~j•v!d2j, ~154!

where we have made the local approximation. If we assu
that the correlation time is short, i.e., if we repla
j2d(j•v) by t/p2 @compare Eqs.~137! and ~130!#, we ob-
tain

h5bgD“c8, ~155!

D5
gt

16p
ln N^v&. ~156!

In that case, Eq.~151! reduces to the Fokker-Planck equati
found in Sec. IV:

]P

]t
1^V&“P5“@D~“P1bgP“c8!#. ~157!

If instead of the Boltzmann distribution~152! we use the
Gaussian distribution~132!, we get

]P

]t
1^V&“P5“@D~“P1agPr !#. ~158!

This equation is closely related to the Krame
Chandrasekhar equation~49! since the drift and the friction
are linear inr andv, respectively.

The diffusion coefficient~156! was previously obtained
by @9,28,23# using phenomenological arguments. Howev
in these studies the correlation timet was not specified. A
first determination oft was obtained in Ref.@5#, but it was
restricted to axisymmetrical or unidirectional flows. Usin
Eq. ~154!, we can determine the expression of the diffusi
coefficient and the correlation time in the general case.
panding the velocity differencev5^V1&2^V& in a Taylor
series inj5r12r , we obtain to first order in the expansio

j•v5Smnjmjn, ~159!

where

Smn5
1

2 S ]^V&m

]r n
1

]^V&n

]r m D ~160!

is the stress tensor. It satisfies the property of symm
Smn5Snm. Since the flow is divergenceless, we also ha
Sxx1Syy50. This suggests introducing the notationsa
5Sxx52Syy andb5Sxy5Syx. In terms of the stress ten
sor ~160!, the diffusion tensor~154! can be rewritten

Dmn5
Ng2

8
PE j2dmn2jmjn

j2
d~Smnjmjn!d2j. ~161!

This integral can be performed easily by working in a ba
where the tensorSmn is antidiagonal. For that purpose, w
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seek a tensorT such thatS5T̃S8T, whereS8 is antidiago-
nal and, by definition,T̃mn5Tnm. We also impose thatT is
unitary so that T̃5T21. Then, if we denote by
(M11,M12,M21,M22) the components of a 232 matrix, we
find S85(0,b8,b8,0) and T5(a,b,2b,a) with a21b2

51 and b85b/(a22b2)52a/2ab. From the above re-
sults, it is also clear thatb8252det(S)5a21b2, where
det(S) stands for the determinant of the matrixS. Now,
introducing a new system of coordinates such thatj8m

5Tmnjn, or alternativelyjm5Tnmj8n, we easily check that
the Jacobian of the transformationj→j8, i.e., the determi-
nant ofT, is equal to 1. Under these circumstances, the
fusion tensor~161! can be writtenD5T̃D8T with

D8mn5
Ng2

8
PE j 82dmn2j 8mj 8n

j82
d„uS~r !uj18j28…dj18dj28 ,

~162!

where we have setuS(r )u52A2det(S). Physically, this
quantity represents the local shear of the flow. The com
nents of the tensor~162! can now be determined easily. Fir
of all,

D8115
Ng2

8

1

uS~r !u
PE j28

2

j18
21j28

2
d~j18j28! dj18dj28 .

~163!

Setting j185j cosu and j285j sinu, where j5j85ur12r u,
we get

D8115
Ng2

8

1

uS~r !u
PE

0

1`

jdjE
0

2p

du sin2ud~j2 cosu sinu!,

~164!

or, equivalently,

D8115
Ng2

4

1

uS~r !u
PE

0

1`dj

j E
0

p

du sinud~cosu!.

~165!

As explained in Appendix A, we regularize the logarithm
divergence by introducing appropriate cutoffs at small a
large scales. With the change of variablest5cosu, we obtain

D8115
Ng2

8

1

uS~r !u
P ln NE

21

11

dtd~ t !5
Ng2

8

1

uS~r !u
P ln N.

~166!

By the same arguments, we find thatD8225D8115D. On the
other hand, it follows, for reasons of antisymmetry by t
transformationj18→2j18 , that D8125D82150. Therefore,
D8mn5Ddmn is diagonal in the basis whereS is antidiago-
nal. This remains true in any basis sinceDmn

5TlmD8lsTsn5D(T̃T)mn5Ddmn. Therefore, close to equi
librium, the diffusion is isotropic and the general express
of the diffusion coefficient is
9-17
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D5
g

8

1

uS~r !u
ln N^v&. ~167!

Comparing with Eq.~156!, we find that the correlation time
is given by

t5
2p

uS~r !u
. ~168!

The quantityuS(r )u52A2det(S) plays a fundamental role
in the theory. Clearly, this expression is invariant by a cha
of referential. For a unidirectional flow or an axisymmetric
flow, we recover the results of Sec IV E and of Ref.@5#.

VI. CONCLUSION

In this paper, we have provided a systematic derivation
the kinetic equations of point vortices, applying the power
projection operator techniques to this problem. We have
scribed how a cloud of point vortices relaxes toward
mean-field statistical equilibrium, leading to a clustering in
large coherent vortices. In the first part of the paper, we h
focused on the relaxation of a ‘‘test’’ vortex in a cloud
background vortices at statistical equilibrium. The cloud
‘‘field’’ vortices plays the role of a thermal bath, as in oth
problems of statistical physics. We have shown that the
vortex undergoes a usual diffusion effect due to random fl
tuations and that it also experiences asystematic drift. This
drift, due to a polarization of the background vortices by t
test vortex, balances the effect of diffusion at equilibriu
providing a dynamical explanation for the persistence
clustering. The drift was previously derived with a linea
response theory@5#, but the diffusion was heuristically intro
duced by adding a white-noise effect. The present deriva
systematically derives the two effects—diffusion and drift
from the same formalism, and is therefore more satisfact
The diffusion derived here turns out to be influenced
long-time correlations, so it is more complex than the us
white-noise effect. When memory effects are ignored,
obtain a Fokker-Planck equation for the evolution of the o
particle distribution function. This Fokker-Planck equati
can also be derived from a phenomenological maximum
tropy production principle@20#. This shows that the structur
of this equation is influenced more by thermodynamics~the
first and second principles! than by the precise microscop
model. However, our systematic procedure starting dire
from the Liouville equation provides ajustification for this
thermodynamic approach and specifies its range of valid
It also allows us to determine explicitly the value of th
diffusion coefficient, which was left unspecified by the ma
mum entropy production principle. All these results could
tested numerically by introducing a test vortex in a ‘‘sea’’
vortices at statistical equilibrium and by solving th
Kirchhoff-Hamilton equations of motion.

In the second part of the paper, we have attempted
describe the evolution of the whole system of vortices
from equilibrium. We have obtained a new kinetic equati
~128!, which incorporates a delocalization in space and tim
This is therefore a non-Markovian intregro-differential equ
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tion. A similar equation also occurs in the quasilinear theo
of the 2D Euler equation@23#. Within some approximation, it
is possible to carry out the time integration explicitly, an
this yields a simpler equation~137!, which only conserves a
delocalization in space. This equation respects all the con
vation laws of the point vortex system and satisfies a H theo-
rem. The relaxation is due to a condition of resonance
tween distant vortices. If the system is sufficient
‘‘resonant,’’ it will reach a maximum entropy state describ
by the Boltzmann distribution. However, if there are n
enough resonances the evolution may stop on a metas
state. Only nontrivial correlations between vortices~for ex-
ample, three-body collisions! can unfreeze the system an
induce further evolution. These correlations are not tak
into account in the present analysis, although the projec
operator formalism might still apply. It would be necessa
to modify the factorization hypothesis~126! so as to accoun
for two-body or three-body correlation functions. It is po
sible, however, that these correlations develop on a m
longer time scale, so it is not yet clear whether they
physically relevant. In any case, the approximations mad
the present paper are a first step towards a rational kin
theory of point vortices.

It is also possible that a system of point vortices und
goes a form of ‘‘violent relaxation’’ in its early stage. Fo
short time scales, the correlations between point vorti
have not yet developed and the average vorticity is a solu
of the 2D Euler equation. When the initial condition is f
from equilibrium, it is well known that the 2D Euler equatio
develops a complicated mixing process leading to the form
tion of an organized state~on a coarse-grained scale!. This
relaxation is quite rapid, of the order of the dynamical tim
tD , and the resulting equilibrium state is predicted to be
complicated superposition of Fermi-Dirac distributions r
specting all the constraints of the Euler equation@26,27#. On
longer time scales, of the order of (N/ ln N)tD , the correla-
tions between point vortices develop and the system un
goes another form of relaxation, much slower. This rela
ation is towards the Boltzmann distribution derived by Joy
and Montgomery@3# and Lundgren and Pointin@4#, which is
the true equilibrium state for a system of point vortices. T
first type of relaxation, by vorticity mixing, was described
Ref. @23# using a quasilinear theory of the 2D Euler equatio
The exclusion principle leading to the Fermi-Dirac statist
was explicitly shown as well as aH theorem. The second
type of relaxation, due to discrete interactions between p
vortices, was the object of the present paper.

It is noteworthy that a similar distinction occurs in th
context of stellar systems@9#. Indeed, the relaxation of star
is a two-stage process. For short time scales;tD , the en-
counters between stars can be neglected and the distrib
function is a solution of the Vlasov equation~analogous to
the 2D Euler equation!. If the system is initially far from
mechanical equilibrium, it will experience a ‘‘violent relax
ation’’ towards a virialized state. This equilibrium is pre
dicted to be a superposition of Fermi-Dirac statistics@25,29#,
as for the 2D Euler equation. Then, on a longer time scale
the order of (N/ ln N)tD , the encounters between stars cann
be ignored anymore and will cause the stars to deviate f
9-18
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their unperturbed trajectories. This collisional relaxation
usually described by a Landau or Fokker-Planck equa
that converges towards the Maxwell-Boltzmann distribut
at equilibrium. On even longer time scales, three-body
counters leading to the formation of binaries induce a s
evolution of the system@30#. Three-body encounters~involv-
ing vortices of different sign! are also relevant in two
dimensional turbulence and lead to the formation of vor
‘‘pairs’’ @19#. The analogy with ‘‘binary stars’’ is interesting
to note. It would be important to test these ideas with n
merical simulations of point vortices or stars. The situation
difficult in the stellar context because a maximum entro
state does not always exist. Indeed, the system can coll
and overheat: this is the so-called ‘‘gravothermal catas
phe’’ @31#. This problem does not occur for point vortice
and it should be possible to show the two~or more! succes-
sive equilibria more properly. An advantage of point vortic
with respect to stars is the lower dimensionality of spa
(D52 instead ofD53, or D56 in phase space! which
should make numerical simulations easier.

ACKNOWLEDGMENTS

I would like to thank J. Sommeria, P. Newton, I. Mezi
A. Provenzale, and F. Bouchet for their interest in th
study.This research was supported in part by the Natio
Science Foundation under Grant No. PHY94-07194.

APPENDIX A: THE STATISTICS OF VELOCITY
FLUCTUATIONS IN AN INHOMOGENEOUS MEDIUM

In this appendix, we study the statistics of velocity flu
tuations produced by an inhomogeneous distribution of p
vortices. This study extends the calculations of@32,33,13# for
a uniform medium and provides a simple framework to u
derstand the logarithmic divergence of the diffusion coe
cient. Let us consider a collection ofN point vortices ran-
domly distributed in a disk of radiusR with an average
densityn(r ). The velocityV occurring at a given locationr
of the flow is the sum of the velocitiesFi ( i 51, . . . ,N)
produced by theN vortices:

V5(
i 51

N

Fi , ~A1!

Fi52
g

2p

~r i2r !'

ur i2r u2
. ~A2!

Following a procedure similar to that adopted in Ref.@13#,
the velocity distribution can be expressed as

WN~V!5
1

4p2E AN~r!e2 i r•Vd2r ~A3!

with

AN~r!5S E ei r•FP~r1!d2r1D N

. ~A4!
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Here,P(r1) denotes the probability of occurrence of a po
vortex in r1 and by definition

F52
g

2p

~r12r !'

ur12r u2
. ~A5!

Introducing explicitly the vortex densityn(r1)5NP(r1), we
have

AN~r!5S 1

NE n~r1!ei r•Fd2r1D N

. ~A6!

Since

E n~r1!d2r15N, ~A7!

we can rewrite our expression forAN(r) in the form

AN~r!5S 12
1

NE n~r1!~12ei r•F!d2r1D N

. ~A8!

In the limit of largeN,R with fixed n(r ), we can approxi-
mate the foregoing expression by

A~r!5e2C(r) ~A9!

with

C~r!5E n~r1!~12ei r•F!d2r1 . ~A10!

Separating the real and imaginary parts ofC(r), we obtain

C~r!5C1~r!2 iC2~r!

5E n~r1!@12cos~r•F!#d2r1

2 i E n~r1!sin~r•F!d2r1 . ~A11!

In the first integral, we find it convenient to introduce th
relative separationj5r12r in terms of which

C1~r!5E n~r1j!@12cos~r•F!#d2j ~A12!

with

F52
g

2p

j'

j2
. ~A13!

In Ref. @13#, it was found that an important contribution t
the velocity fluctuations comes from the nearest neigb
This justifies to making the local approximationn(r1j)
.n(r ) in Eq. ~A12!. In this approximation,

C1~r!5n~r !E @12cos~r•F!#d2j. ~A14!
9-19



a

e-
-

-

s

te

o
d
-
s

nd
he

ly
this

is
s
li-
ain

ond
all
epa-
ns
ach

unt
e

the
ral
n,

he
from

s.
d

the

P. H. CHAVANIS PHYSICAL REVIEW E 64 026309
This quantity is closely related to the functionC(r) evalu-
ated in Ref.@13# for a distribution of vortices with uniform
density n. The only difference is the presence of the loc
densityn(r ) in place ofn. Therefore, we can infer directly
that

C1~r!5
n~r !g2

8p
lnS 2pR

gr D r2. ~A15!

In fact, the local approximation is only marginally valid b
cause, as discussed in Ref.@13#, the contribution of the near
est neighbor is precisely of the same order of magnitude
the contribution of the rest of the system. This results in
logarithmic divergence in Eq.~A15! due to the weak collec
tive behavior of the system.

In the second integral appearing in Eq.~A11!, the contri-
bution from proximate vortices vanishes by symmetry. A
result, the integral is dominated by large values ofur1u or,
equivalently, by small values ofuFu. We can therefore make
the approximation sin(r•F).r•F and write

C2~r!5rE n~r1!Fd2r1 . ~A16!

In the integral, we recognize the mean-field velocity crea
in r by the average distribution of vortices:

^V&~r !5E n~r1!Fd2r1 . ~A17!

Hence,

C2~r!5r^V&~r !. ~A18!

Substituting the explicit expression forC(r) in Eq. ~A9!,
we obtain

A~r!5e2[n(r )g2/8p] ln(2pR/gr)r21 i r^V&(r ). ~A19!

Therefore, the velocity distribution inr can be written quite
generally,

W~V!5
1

4p2E e2[n(r )g2/8p] ln(2pR/gr)r2
e2 i r[V2^V&(r )]d2r.

~A20!

This is the same distribution as for a uniform distribution
vortices except that the constant densityn has been replace
by the local densityn(r ) and the distribution is for the fluc
tuating velocityV5V2^V&(r ). Repeating the calculation
of Ref. @13#, the velocity p.d.f is explicitly given by

W~V!5
4

n~r !g2ln N
e24p/[n(r )g2 ln N]V 2

@V&Vcrit~N!#,

~A21!

W~V!;
n~r !g2

4p2V 4
@V*Vcrit~N!#, ~A22!

where
02630
l

as
a

a

d

f

Vcrit~N!;S n~r !g2

4p
ln ND 1/2

ln1/2~ ln N!. ~A23!

This distribution lies at the frontier between Gaussian a
Lévy laws: the core of the distribution is Gaussian while t
tail decays algebraically as for Le´vy laws. This is because
the variance of the individual velocities~A2! diverges loga-
rithmically so the central-limit theorem is only marginal
applicable. For that reason, we have proposed to call
distribution the ‘‘marginal Gaussian distribution’’@14#. In the
strict mathematical limitN→1`, the transition between the
two regimes is rejected to infinity and the velocity p.d.f.
purely Gaussian@33#. However, the convergence toward
this Gaussian distribution is so slow that in practical app
cations it is never reached: the algebraic tail always rem
@18#.

According to Eqs.~A1! and~A2!, the variance of the ve-
locity can be written

^V 2&5E
uju50

R

n~r1j!
g2

4p2j2
d2j5n~r !E

0

R g2

4p2j2
2pjdj,

~A24!

where we have made the local approximation in the sec
equality. This quantity diverges logarithmically at both sm
and large vortex separations. The divergence at small s
rations is a failure of our model, which ignores correlatio
between vortices. In fact, when two vortices approach e
other, they can form a pair, as discussed in Ref.@18#, and our
mean-field theory clearly breaks down. We shall acco
heuristically for this failure by introducing a cutoff at som
minimum distancedpair;(pn ln N)21/2 @13#. The divergence
at large separations is due to the unshielded nature of
interaction potential. It is therefore natural to cut the integ
at R, the typical size of the system. With this regularizatio
we obtain

^V 2&5
n~r !g2

2p
lnS R

d D5
n~r !g2

4p
ln N. ~A25!

Since the divergence is weak~logarithmic!, the result does
not depend crucially on the precise value of the cutoffs. T
same expression for the variance can also be obtained
the formula

^V 2&5E W~V!V 22pVdV ~A26!

if we introduce a cutoff at large velocities and use Eq
~A21!, ~A22!, and~A23! @to sufficient accuracy, we just nee
to consider Eq.~A21!#.

The diffusion coefficient can be expressed in terms of
variance~A25! and the typical correlation timet by @13#

D5 1
4 t^V 2&. ~A27!

Using Eq.~A25! and the relation̂v&5ng, we obtain

D5
gt

16p
ln N^v& ~A28!
9-20
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in agreement with our result~156!. The correlation time is
more difficult to evaluate. If we ignore the differential rot
tion of the vortices, the calculations of Ref.@13# are directly
applicable and lead to the expression

t;
1

^v&~r !Aln N
. ~A29!

This is the typical time needed by a vortex to cross the
terparticle distanced;1/An(r ) with the velocity A^V 2&.
With this approximation, the diffusion coefficient is given b
Eq. ~121!. On the other hand, if we consider that the vortic
are transported by the equilibrium flow and evaluate the
fusion coefficient with the Kubo formula~see Appendix B!,
we find that the correlation time is related to the local sh
by Eq. ~168!, i.e.,

t5
2p

uS~r !u
. ~A30!

Physically, it corresponds to the time needed by two vorti
with relative velocitySd to be stretched by the shear on
distance;d. This approximation breaks down, howeve
when the shear is weak. In that case,t is given by Eq.~A29!
obtained when only the dispersion of the vortices is cons
ered. Clearly, a general formula should take into acco
simultaneously the effect of the shear and the dispersio
the particles.

APPENDIX B: THE KUBO FORMULA

Let us consider the diffusion of a test vortex in a ‘‘sea’’
field vortices described by the equilibrium distribution

meq~r1 , . . . ,rN!5)
i 51

N

Peq~r i !. ~B1!

The general form of the diffusion coefficient, as defined
Eq. ~40!, reads

Dmn5
^Dr mDr n&

2Dt
. ~B2!

Now, the net displacement of the test vortex produced by
fluctuations of the velocity betweent and t1Dt is given by

Dr5E
t

t1Dt

V~ t8!dt8. ~B3!

Substituting explicitly forDr from Eq. ~B3! in Eq. ~B2!, we
have

Dmn5
1

2DtE0

Dt

dt8E
0

Dt

dt9^V m~ t1t8!V n~ t1t9!&eq,

~B4!
02630
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where^ &eq denotes the average with respect to the equi
rium distribution~B1!. Since the correlation function appea
ing in the integral only depends on the time differen
ut92t8u, we also have

Dmn5
1

DtE0

Dt

dt8E
0

t8
dt9^V m~ t1t8!V n~ t1t9!&eq ~B5!

or, alternatively,

Dmn5
1

DtE0

Dt

dt8E
0

t8
dt9^V m~ t !V n~ t1t92t8!&eq. ~B6!

With the change of variablest5t82t9, we obtain succes-
sively

Dmn5
1

DtE0

Dt

dt8E
0

t8
dt^V m~ t !V n~ t2t!&eq

5
1

DtE0

Dt

dtE
t

Dt

dt8^V m~ t !V n~ t2t!&eq

5
1

DtE0

Dt

dt^V m~ t !V n~ t2t!&eq~Dt2t!. ~B7!

If the correlation function̂ V m(t)V n(t2t)&eq decays more
rapidly thant21, we can take the limitDt→1` to finally
obtain

Dmn5E
0

1`

^V m~ t !V n~ t2t!&eqdt. ~B8!

This is the Kubo formula for our problem. Remembering th
V denotes the fluctuation of the total velocity,

V~ t !5V~ t !2^V~ t !&eq, ~B9!

we find that

^V m~ t !V n~ t2t!&eq5^Vm~ t !Vn~ t2t!&eq

2^Vm~ t !&eq̂ Vn~ t2t!&eq.

~B10!

Now, the first quantity in brackets can be written explicitly

^Vm~ t !Vn~ t2t!&eq

5(
i 51

N

(
j 51

N E Vm~ i→0,t !Vn~ j→0,t2t!meq~$r k%!

3)
k51

N

d2r k

5(
i 51

N

(
j Þ i

E Vm~ i→0,t !Vn~ j→0,t2t!meq~$r k%!

3)
k51

N

d2r k1(
i 51

N E Vm~ i→0,t !Vn~ i→0,t2t!
9-21
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meq~$r k%!)
k51

N

d2r k

5N~N21!^Vm~1→0,t !&eq̂ Vn~1→0,t2t!&eq

1NE Vm~1→0,t !Vn~1→0,t2t!Peq~r1!d2r1 .

~B11!

For large N, we can make the approximationN(N21)
.N2. Using Eqs.~B10! and ~B11!, the correlation function
can be set in the form

^V m~ t !V n~ t2t!&eq5NE Vm~1→0,t !Vn~1→0,t2t!

3Peq~r1!d2r1 . ~B12!

Since the integral is dominated by interactions involvi
relatively close vortices, we can make the local approxim
tion

^V m~ t !V n~ t2t!&eq5NE Vm~1→0,t !Vn~1→0,t2t!

3Peq~r !d2r1 . ~B13!

The expression for the diffusion coefficient then become

Dmn5NE
0

1`

dtE Vm~1→0,t !Vn~1→0,t2t!Peq~r !d2r1 .

~B14!

For the sake of brevity, we shall denote the velocity corre
tion function by

Cmn~t![^V m~ t !V n~ t2t!&eq

5NE Vm~1→0,t !Vn~1→0,t2t!Peq~r !d2r1 .

~B15!

Therefore, the Kubo formula takes the form

Dmn5E
0

1`

Cmn~t!dt. ~B16!

More generally, we have

^Dr mDr n&52E
0

Dt

Cmn~t!~Dt2t!dt. ~B17!

These quantities are calculated explicitly in Appendix C
the case of simple flows.

APPENDIX C: THE CALCULATION OF THE DIFFUSION
COEFFICIENT

In this appendix, we calculate the Kubo integral using
approximation in which the point vortices follow the stream
lines of the equilibrium flow.
02630
-

-

n

1. Unidirectional flow

We shall first calculate the velocity correlation functio
~B15! and the diffusion coefficient~B14! in the case of a
unidirectional equilibrium flow. The trajectory of a fluid pa
ticle advected by this flow is simply.

y~ t2t!5y~ t !, ~C1!

x~ t2t!5x~ t !2^V&eq~y!t. ~C2!

According to Sec. IV E 1, we are particularly interested
the yy component~103! of the velocity correlation function.
Explicitly, it has the form

C~t!5
Ng2

4p2E dx1dy1

3
x12x

~x12x!21~y12y!2
~ t !

3
x12x

~x12x!21~y12y!2
~ t2t!Peq~y!, ~C3!

where we have used Eq.~7!. The second term involves th
quantity

~x12x!~ t2t!5x12x1@^V&eq~y1!2^V&eq~y!#t.
~C4!

In the local approximation, we can expand the velocity d
ference in a Taylor series iny12y. To first order, we have

^V&eq~y1!2^V&eq~y!.2S~y!~y12y!, ~C5!

whereS(y) is the local shear of the flow~105!. Introducing
the variablesX[x12x andY[y12y, we obtain

C~t!5
Ng2

4p2
Peq~y!E dXdY

X

X21Y2

X1S~y!Yt

@X1S~y!Yt#21Y2
.

~C6!

The integration overX can be performed easily since th
integrand is just a rational function of polynomials. Afte
straightforward calculations, we find

C~t!5
Ng2

4p
Peq~y!

1

11
1

4
S2~y!t2

E
0

1`dY

Y
. ~C7!

The integral overY diverges logarithmically for both smal
and largeY. The reason for this divergence has been given
Ref. @13# and in Appendix A. Introducing two cutoffs a
scalesd and R, and noting that ln(R/d);1

2ln N, we finally
obtain Eq.~104!. For t→1`, the correlation function de-
creases liket22. This is a slow decay but still the diffusion
coefficient~B16! converges. Using
9-22
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E
0

t

C~t!dt5
Ng2

4p

ln N

uS~y!u
arctanS 1

2
uS~y!ut D Peq~y!

~C8!

and taking the limitt→1`, we find Eq.~109!. More gener-
ally, using Eqs.~B17! and ~C8!, we have

^~Dy!2&5
Ng2

2p

ln N

uS~y!u
Peq~y!FarctanS 1

2
uS~y!uDt DDt

2
1

uS~y!u
lnS 11

1

4
S~y!2~Dt !2D G . ~C9!

For Dt→0 ~ballistic motion!,

^~Dy!2&5
Ng2

8p
ln NPeq~y!~Dt !25

1

2
^V 2&~Dt !2,

~C10!

and forDt→1` ~diffusive motion!,

^~Dy!2&5
Ng2

4

ln N

uS~y!u
Peq~y!Dt. ~C11!

2. Axisymmetrical flow

In an axisymmetrical flow, the trajectory of a fluid partic
takes the simple form

r ~ t2t!5r ~ t !, ~C12!

u~ t2t!5u~ t !2
^V&eq~r !

r
t. ~C13!

As indicated in Sec. IV E 2, we are particularly interested
the r (t)r (t2t) component~112! of the correlation function.
Let us introduce the separationdr[r12r between the field
vortex 1 and the test vortex. In the local approximation,dr
can be considered as a small quantity. Therefore we can w

dr5rdueu1drer[Xeu1Yer , ~C14!

d2r15d2~dr !5dXdY. ~C15!

With these notations, the correlation function~112! can be
rewritten as

C~t!5
Ng2

4p2
Peq~r !E dXdY

X

X21Y2
~ t !

X

X21Y2
~ t2t!.

~C16!

Now,

Y~ t2t!5dr ~ t2t!5r 1~ t2t!2r ~ t2t!5r 1~ t !2r ~ t !

5Y~ t !5Y ~C17!

and
02630
ite

X~ t2t!5r ~ t2t!du~ t2t!5r ~ t2t!@u1~ t2t!2u~ t2t!#

5r Fu1~ t !2u~ t !2S ^V&eq~r 1!

r 1
2

^V&eq~r !

r D tG .
~C18!

In the local approximation, we can expand the last term
Eq. ~C18! in a Taylor series inr 12r . This yields

X~ t2t!5r @u1~ t !2u~ t !#2r
d

dr S ^V&eq~r !

r D ~r 12r !t

5X2S~r !Yt, ~C19!

whereS(r ) is the local shear of the flow~114!. Substituting
Eqs.~C17! and ~C19! into Eq. ~C16!, we get

C~t!5
Ng2

4p2
Peq~r !E dXdY

X

X21Y2

X2S~r !Yt

@X2S~r !Yt#21Y2
.

~C20!

This integral is similar to Eq.~C6!, so we directly obtain
Eqs.~113! and ~118!.

APPENDIX D: CONSERVATION LAWS SATISFIED
BY THE GENERALIZED KINETIC EQUATION

In this section, we prove some general properties satis
by Eq. ~128!. Note first that it can be written

]P

]t
1^V&“P52“•J, ~D1!

where

J52NE
0

t

dtE d2r1V~1→0! t$V~1→0!P1“P

1V~0→1!P“P1% t2t ~D2!

is the diffusion current. It is clear at first sight that Eq.~D1!
conserves the total circulationG5*^v&d2r provided that
J•n̂50 on the boundary. We now prove the conservation
other integral constraints depending on the domain shap

~i! In a circular and in an infinite domain, the angul
momentum defined by

L5E ^v&r 2d2r ~D3!

must be conserved. Taking the time derivative of Eq.~D3!,
substituting for Eq.~D1!, and remembering thatL is con-
served by the advective term, we get

L̇52NgE J•rd2r . ~D4!

Substituting explicitly for the diffusion current~D2! in Eq.
~D4!, we obtain
9-23
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L̇522N2gE
0

t

dtE d2rd2r1@r•V~1→0!# t$V~1→0!P1“P

1V~0→1!P“P1% t2t . ~D5!

Permuting the dummy variablesr and r1, we get

L̇522N2gE
0

t

dtE d2rd2r1@r1•V~0→1!# t

3$V~1→0!P1“P1V~0→1!P“P1% t2t . ~D6!

Adding these two quantities, we arrive at the final express

L̇52N2gE
0

t

dtE d2rd2r1@r•V~1→0!1r1•V~0→1!# t

3$V~1→0!P1“P1V~0→1!P“P1% t2t . ~D7!

Now, the term in curly brackets vanishes as shown by
following argument. Consider two point vortices in a circul
~or infinite! domain. Their angular momentum is

L5g~r 21r 1
2! ~D8!

and it is conserved. This implies

05
dL

dt
52gS r•

dr

dt
1r1•

dr1

dt D
52g@r•V~1→0!1r1•V~0→1!#. ~D9!

We can also prove this result by a direct calculation. In
unbounded domainV(0→1)52V(1→0) and consequently

r•V~1→0!1r1•V~0→1!5V~1→0!•~r2r1!50,
~D10!

where we have used Eq.~7! to get the last equality. In a
circular domain, the velocityV(1→0) is given by Eq.~7!
plus a term Vb(1→0) which can be determined with th
method of ‘‘images’’ if appropriate. IfR denotes the domain
radius, we find

Vb~1→0!5
g

2p
ẑ3

R2

r 1
2

r12r

U R2

r 1
2

r12rU2 . ~D11!

Therefore,

r•Vb~1→0!1r1•Vb~0→1!

5
g

2p H ~ ẑ3r1!•r

U R

r 1
r12

r 1

R
rU2 1

~ ẑ3r !•r1

U R

r
r2

r

R
r1U2J .

~D12!

Noting that (ẑ3r1)•r52( ẑ3r )•r1 and that
02630
n

e

n

UR

r 1
r12

r 1

R
rU2

5R21
r 1

2

R2
r 222r•r15URr r2

r

R
r1U2

,

~D13!

we finally conclude that

r•V~1→0!1r1•V~0→1!50. ~D14!

From this identity and from Eq.~D7!, it results that the ki-
netic equation~128! conserves the angular momentum in
disk and in an infinite domain, i.e.,L̇50.

~ii ! In an infinite domain or in a channel, the linear im
pulse

P5E r3^v&ẑd2r ~D15!

must be conserved~in a channel extending in thex direction,
only the componentPx of the linear impulse must be con
served!. Taking the time derivative of Eq.~D15!, substituting
for Eq. ~D1!, and remembering thatP is conserved by the
advective term, we get

Ṗ'5NgE Jd2r . ~D16!

Substituting explicitly for the diffusion current~D2! in Eq.
~D16!, permutting the dummy variablesr andr1, and taking
the half-sum of the resulting expressions, we finally obta

Ṗ'52
N2g

2 E
0

t

dtE d2rd2r1@V~1→0!1V~0→1!# t

3$V~1→0!P1“P1V~0→1!P“P1% t2t . ~D17!

Now, we can use the same argument as before to show
the term in curly brackets vanishes. Let us consider two po
vortices in a channel~or in an infinite domain!. Their linear
impulse is

P'5g~r1r1! ~D18!

and it is conserved. This implies

05
dP'

dt
5gS dr

dt
1

dr1

dt D5g@V~1→0!1V~0→1!#.

~D19!

We can also prove this result by a direct calculation. Eq
tion ~D19! is obvious in an unbounded domain sinceV(0
→1)52V(1→0). In a channel extending in thex direction,
we need to show thatṖx50, i.e., Vy(1→0)1Vy(0→1)
50. Now, the velocityVy(1→0) is given by Eq.~7! plus a
term Vb(1→0)y which can be determined with the metho
of ‘‘images.’’ If a denotes the width of the channel, we fin
that
9-24
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Vb~1→0!y52
g

2p (
n52`

1` H x2x1

~x2x1!21~y2y122na!2

2
x2x1

~x2x1!21~y1y122na!2J . ~D20!

Under this form, it is clear thatVb(1→0)y is antisymmetric
under the exchange of 1 and 0, so that finally

Vy~1→0!1Vy~0→1!50. ~D21!

From this identity and from Eq.~D17!, it results that the
kinetic equation~128! conserves the linear impulse in
channel or in an infinite domain, i.e.,Ṗ50.

APPENDIX E: CALCULATION OF THE MEMORY
FUNCTION

In this appendix, we calculate the memory function th
occurs in Eq.~128!.

1. Axisymmetrical flow

If we assume thatP5P(r ,t), then Eq.~128! simplifies to

]P

]t
52

1

r

]

]r
~rJr !, ~E1!

where

Jr52NE
0

t

dtE d2r1Vr (t)~1→0! tH Vr (t2t)~1→0!P1

]P

]r

2Vr 1(t2t)~1→0!P
]P1

]r 1
J

t2t

~E2!

and whereVr (t)(1→0) is the component of the vectorV(1
→0) in the direction ofr (t). If we denote by„r (t),u(t)… and
„r 1(t),u1(t)… the polar coordinates that specify the positi
of the point vortices 0 and 1 at timet, we easily find that

Vr (t)~1→0!52
g

2p

r 1 sin~u2u1!

r 1
21r 222rr 1 cos~u2u1!

. ~E3!

We shall assume that betweent and t2t, the point vortices
follow circular trajectories with angular velocityV(r ,t). In
that case,r (t2t)5r and u(t2t)5u2V(r ,t)t. Then, we
obtain

Vr (t2t)~1→0!52
g

2p

r 1 sin~u2u12DVt!

r 1
21r 222rr 1 cos~u2u12DVt!

~E4!

with

DV5V~r ,t !2V~r 1 ,t !. ~E5!

We find similarly that Vr 1(t2t)(1→0)5(r /r 1)Vr (t2t)(1

→0). Our previous assumptions also imply thatP„r (t
02630
t

2t),t2t….P(r ,t) betweent and t2t. In other words, this
means that the correlation time is smaller than the time s
on which the average vorticity changes appreciably. We
not assume that it ismuchsmaller, so this approximation i
not over restrictive. In that case, the diffusion current b
comes

Jr52NE
0

1`

dtE
0

2p

du1E
0

1`

rr 1dr1Vr (t)~1→0!

3Vr (t2t)~1→0!F1

r
P1

]P

]r
2

1

r 1
P

]P1

]r 1
G , ~E6!

where the time integral has been extended to1`. We now
need to evaluate the memory function

M5E
0

1`

dtE
0

2p

du1Vr (t)~1→0!Vr (t2t)~1→0!. ~E7!

Introducing the notationsf5u12u and

l5
2rr 1

r 1
21r 2

,1, ~E8!

we have explicitly

M5S gl

4pr D
2E

0

1`

dtE
0

2p

df
sinf

12l cosf

3
sin~f1DVt!

12l cos~f1DVt!
. ~E9!

This can also be written

M5S g

4pr D
2E

0

1`

dtE
0

2p

dfV8~f!V8~f1DVt!,

~E10!

where

V~f!5 ln~12l cosf!. ~E11!

We now write the functionV(f) in the form of a Fourier
series,

V~f!5 (
n52`

1`

aneinf with an5
1

2pE2p

p

V~f!e2 infdf.

~E12!

The memory function becomes

M52
1

2S g

4pr D
2E

2`

1`

dtE
0

2p

df

3 (
n,m52`

1`

nmanamei (n1m)feimDVt. ~E13!

Carrying out the integrations onf and t using the integral
representation of the delta function
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d~x!5
1

2pE2`

1`

e2 irxdr, ~E14!

we are left with

M52
g2

8r 2 (
n,m52`

1`

nmanamdn,2md~mDV!

5
g2

8r 2
d~DV! (

n52`

1`

unuan
2 . ~E15!

It remains for us to evaluate the series that appears in the
expression of the memory function. Using the identities

E
0

p

ln~12l cosf!cos~nf!df

52
p

n S 1

l
2A 1

l2
21D n

~n.0!, ~E16!

E
0

p

ln~12l cosf!df5p lnS 1

2
1

A12l2

2 D , ~E17!

and the definition~E8! of l, we find thata0,` and, forn
.0,

an52
1

n S ~r 1
21r 2!2ur 1

22r 2u
2rr 1

D n

52
1

n S r ,

r .
D n

, ~E18!

wherer . (r ,) is the biggest~smallest! of r and r 1. There-
fore, the value of the series is

(
n52`

1`

unuan
252(

n51

1`

nan
252(

n51

1`
1

n S r ,

r .
D 2n

522 lnF12S r ,

r .
D 2G . ~E19!

The memory function takes the form

M52
g2

4r 2
d~DV!lnF12S r ,

r .
D 2G ~E20!

and the diffusion current in the axisymmetrical case can
written

Jr5
Ng2

4r E
0

1`

r 1dr1d~V2V1!lnF12S r ,

r .
D 2G H 1

r
P1

]P

]r

2
1

r 1
P

]P1

]r 1
J . ~E21!

This leads to the kinetic equation~133!.
02630
st

e

2. Unidirectional flow

If we assume thatP5P(y,t), then Eq.~128! simplifies to

]P

]t
52

]Jy

]y
~E22!

with

Jy52NE
0

t

dtE dx1dy1Vy~1→0! tV
y~1→0! t2t

3H P1

]P

]y
2P

]P1

]y1
J

t2t

. ~E23!

Assuming that betweent and t2t the vortices follow linear
trajectories with velocity^V&5^V&(y,t)ex , we have y(t
2t)5y andx(t2t)5x2^V&(y,t)t. Therefore, the function
Vy(1→0) at timest and t2t takes explicitly the form

Vy~1→0! t52
g

2p

x12x

~x12x!21~y12y!2
~E24!

and

Vy~1→0! t2t52
g

2p

x12x2DVt

~x12x2DVt!21~y12y!2
,

~E25!

where we have introduced the notation

DV5^V&~y1 ,t !2^V&~y,t !. ~E26!

We also assume that the correlation time is smaller than
time scale over which the vorticity changes appreciab
Then,P„y(t2t),t2t….P(y,t) and the diffusion current be
comes

Jy52NE
0

t

dtE dx1dy1Vy~1→0! tV
y~1→0! t2t

3H P1

]P

]y
2P

]P1

]y1
J . ~E27!

We now need to calculate the memory function

M5E
0

1`

dtE
2`

1`

dx1Vy~1→0! tV
y~1→0! t2t . ~E28!

Using Eqs.~E24! and ~E25!, we have explicitly

M5
g2

4p2E0

1`

dtE
2`

1`

dX
X

X21Y2

X2DVt

~X2DVt!21Y2
,

~E29!

where we have setX5x12x, Y5y12y. Equation~E29! can
also be written
9-26
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M5
g2

4p2E0

1`

dtE
2`

1`

dX
]W

]X
~X,Y!

]W

]X
~X2DVt,Y!

~E30!

with

W~X,Y!5 lnAX21Y25 ln j. ~E31!

We shall now write the functionW(j) in the form of a Fou-
rier integral

W~j!5
1

~2p!2E Ŵ~k!e2 ik•jd2k with

Ŵ~k!5E W~j!eik•jd2j. ~E32!

Then, the foregoing expression for the memory function
comes

M52
g2

~2p!6E0

1`

dtE
2`

1`

dXE d2kd2k8Ŵ~k!Ŵ~k8!

3kxkx8e
2 i (k1k8)•jeikx8DVt. ~E33!

Carrying out the integrations overt andX, we get

M52
g2

32p4E d2kd2k8Ŵ~k!Ŵ~k8!kxkx8

3d~kx1kx8!e2 i (ky1ky8)Yd~kx8DV! ~E34!

and, consequently,

M5
g2

32p4
d~DV!E

2`

1`

dkxdkydky8Ŵ~kx ,ky!Ŵ

~2kx ,ky8!ukxue2 i (ky1ky8)Y. ~E35!

Now, the Fourier transform ofW can be written explicitly

Ŵ~k!52pE
0

1`

W~j!J0~kj!jdj, ~E36!

where use has been made of the well-known identity

E
0

2p

cos~z cosu!du52pJ0~z!, ~E37!

whereJ0 is the Bessel function of order zero. It is immed
ately seen that the Fourier transform ofW as defined by Eq.
~E31! does not exist. Indeed, the integral~E36! diverges
whenj→1`, i.e., at large separations. However, in physi
situations the domain never extends to infinity so that,
practice, the integral remains finite. A convenient way
introduce a cutoff at large separations is to make the sub
tution

W~j!5 ln j→W~j!52K0~j/L !, ~E38!
02630
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whereK0 is the modified Bessel function of order zero andL
is a length scale of the order of the system size. For sm
separationsK0(z);2 ln z and for large separationsK0(z)
;A(p/2z)e2z. This modification amounts to replacing th
Poisson equation~2! by an equation of the form

2Dc1
1

L
c5v. ~E39!

Equation~E39! is precisely what is obtained in geophysics
the ‘‘quasigeostrophic approximation.’’ The deformation
the fluid surface introduces a shielding of the interaction
tween vortices on a length;L, called the Rossby radius
Obviously, the Rossby radius plays the same role as the
bye length in plasma physics.

With this prescription, we find that

Ŵ~k!52
2p

k21kL
2

, ~E40!

wherekL51/L. Substituting in Eq.~E35!, we get

M5
g2

2p2
d~DV!E

2`

1`

dkxukxuS E
0

1` cos~kyY!

kL
21kx

21ky
2

dkyD 2

.

~E41!

The integral onky can be carried out easily, leaving the res

M5
g2

4
d~DV!E

0

1`

dkx

kx

kL
21kx

2
e22uYuAkL

2
1kx

2
. ~E42!

Now, settingt254Y2(kx
21kL

2), we finally obtain

M5
g2

4
d~DV!E1S 2uYu

L D , ~E43!

where

E1~x!5E
x

1`e2t

t
dt ~E44!

is the exponential integral. Forx→0, we haveE1(x)52C
2 ln x, whereC50.577 21 . . . isEuler’s constant. In conclu-
sion, the diffusion current in the unidirectional case takes
form

Jy52
Ng2

4 E
2`

1`

dy1d~V12V!E1S 2uy12yu
L D

3H P1

]P

]y
2P

]P1

]y1
J ~E45!

and it leads to the kinetic equation~135!.
9-27
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